Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease - PubMed (original) (raw)

Meta-Analysis

Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease

Evangelos Evangelou et al. PLoS One. 2007.

Abstract

Background: Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques.

Methodology/principal findings: Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I(2) = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets).

Conclusions/significance: Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1

Figure 1

Meta-analyses of the three datasets for the 6 single nucleotide polymorphisms that were selected (p<0.05 unadjusted for multiple comparisons) with at least two of the three strategies. For each polymorphism the forest plot shows the odds ratio and 95% confidence interval for each dataset as well as the summary odds ratio and 95% confidence intervals by random effects calculations. Also shown is the p-value for the summary effect and the I-squared statistic for between-dataset heterogeneity.

References

    1. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108. - PubMed
    1. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet. 2005;6:109–18. - PubMed
    1. Todd JA. Statistical false positive or true disease pathway? Nat Genet. 2006;38:731–3. - PubMed
    1. Ioannidis JP. Genetic associations: false or true? Trends Mol Med. 2003;9:135–8. - PubMed
    1. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet. 2005;77:685–93. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources