Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation - PubMed (original) (raw)
. 2007 Jul 1;110(1):375-9.
doi: 10.1182/blood-2006-12-062125. Epub 2007 Mar 15.
Affiliations
- PMID: 17363731
- DOI: 10.1182/blood-2006-12-062125
Free article
Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation
Alexandre Theocharides et al. Blood. 2007.
Free article
Abstract
To study the role of the JAK2-V617F mutation in leukemic transformation, we examined 27 patients with myeloproliferative disorders (MPDs) who transformed to acute myeloid leukemia (AML). At MPD diagnosis, JAK2-V617F was detectable in 17 of 27 patients. Surprisingly, only 5 of 17 patients developed JAK2-V617F-positive AML, whereas 9 of 17 patients transformed to JAK2-V617F-negative AML. Microsatellite analysis in a female patient showed that mitotic recombination was not responsible for the transition from JAK2-V617F-positive MPD to JAK2-V617F-negative AML, and clonality determined by the MPP1 polymorphism demonstrated that the granulocytes and leukemic blasts inactivated the same parental X chromosome. In a second patient positive for JAK2-V617F at transformation, but with JAK2-V617F-negative leukemic blasts, we found del(11q) in all cells examined, suggesting a common clonal origin of MPD and AML. We conclude that JAK2-V617F-positive MPD frequently yields JAK2-V617F-negative AML, and transformation of a common JAK2-V617F-negative ancestor represents a possible mechanism.
Similar articles
- Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation.
Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ, Erber WN, Kusec R, Larsen TS, Giraudier S, Le Bousse-Kerdilès MC, Griesshammer M, Reilly JT, Cheung BY, Harrison CN, Green AR. Campbell PJ, et al. Blood. 2006 Nov 15;108(10):3548-55. doi: 10.1182/blood-2005-12-013748. Epub 2006 Jul 27. Blood. 2006. PMID: 16873677 - JAK2 V617F-positive acute myeloid leukaemia (AML): a comparison between de novo AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group.
Aynardi J, Manur R, Hess PR, Chekol S, Morrissette JJD, Babushok D, Hexner E, Rogers HJ, Hsi ED, Margolskee E, Orazi A, Hasserjian R, Bagg A. Aynardi J, et al. Br J Haematol. 2018 Jul;182(1):78-85. doi: 10.1111/bjh.15276. Epub 2018 May 16. Br J Haematol. 2018. PMID: 29767839 - Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F.
Schaub FX, Jäger R, Looser R, Hao-Shen H, Hermouet S, Girodon F, Tichelli A, Gisslinger H, Kralovics R, Skoda RC. Schaub FX, et al. Blood. 2009 Feb 26;113(9):2022-7. doi: 10.1182/blood-2008-07-167056. Epub 2008 Dec 1. Blood. 2009. PMID: 19047681 - The 2001 World Health Organization and updated European clinical and pathological criteria for the diagnosis, classification, and staging of the Philadelphia chromosome-negative chronic myeloproliferative disorders.
Michiels JJ, De Raeve H, Berneman Z, Van Bockstaele D, Hebeda K, Lam K, Schroyens W. Michiels JJ, et al. Semin Thromb Hemost. 2006 Jun;32(4 Pt 2):307-40. doi: 10.1055/s-2006-942754. Semin Thromb Hemost. 2006. PMID: 16810609 Review. - [Myeloproliferative diseases caused by JAK2 mutation].
Nagata K, Shimoda K. Nagata K, et al. Rinsho Byori. 2009 Apr;57(4):357-64. Rinsho Byori. 2009. PMID: 19489438 Review. Japanese.
Cited by
- The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms.
Greenfield G, McPherson S, Mills K, McMullin MF. Greenfield G, et al. J Transl Med. 2018 Dec 17;16(1):360. doi: 10.1186/s12967-018-1729-7. J Transl Med. 2018. PMID: 30558676 Free PMC article. Review. - Accelerated Phase of Atypical Chronic Myeloid Leukemia with Severe Disseminated Intravascular Coagulation at Initial Presentation.
Fujita M, Kamachi K, Yokoo M, Kidoguchi K, Kusaba K, Kizuka-Sano H, Yamaguchi K, Nishioka A, Yoshimura M, Kubota Y, Ando T, Kojima K, Kimura S. Fujita M, et al. Intern Med. 2020 Jun 15;59(12):1549-1553. doi: 10.2169/internalmedicine.4265-19. Epub 2020 Mar 19. Intern Med. 2020. PMID: 32188810 Free PMC article. - Myeloid sarcoma in essential thrombocythemia that transformed into acute myeloid leukemia.
Shikata H, Matumoto T, Teraoka H, Kaneko M, Nakanishi M, Yoshino T. Shikata H, et al. Int J Hematol. 2009 Mar;89(2):214-217. doi: 10.1007/s12185-008-0252-7. Epub 2009 Jan 27. Int J Hematol. 2009. PMID: 19172381 - When the Brakes are Lost: LNK Dysfunction in Mice, Men, and Myeloproliferative Neoplasms.
Oh ST. Oh ST. Ther Adv Hematol. 2011 Feb;2(1):11-9. doi: 10.1177/2040620710393391. Ther Adv Hematol. 2011. PMID: 23556072 Free PMC article. - Blast-phase myeloproliferative neoplasms: risk factors and treatment approaches.
Pettit K, Odenike O. Pettit K, et al. Expert Rev Hematol. 2016 Sep;9(9):851-859. doi: 10.1080/17474086.2016.1210004. Epub 2016 Jul 29. Expert Rev Hematol. 2016. PMID: 27385032 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous