Weak binding affinity of human 4EHP for mRNA cap analogs - PubMed (original) (raw)
Weak binding affinity of human 4EHP for mRNA cap analogs
Joanna Zuberek et al. RNA. 2007 May.
Abstract
Ribosome recruitment to the majority of eukaryotic mRNAs is facilitated by the interaction of the cap binding protein, eIF4E, with the mRNA 5' cap structure. eIF4E stimulates translation through its interaction with a scaffolding protein, eIF4G, which helps to recruit the ribosome. Metazoans also contain a homolog of eIF4E, termed 4EHP, which binds the cap structure, but not eIF4G, and thus cannot stimulate translation, but it instead inhibits the translation of only one known, and possibly subset mRNAs. To understand why 4EHP does not inhibit general translation, we studied the binding affinity of 4EHP for cap analogs using two methods: fluorescence titration and stopped-flow measurements. We show that 4EHP binds cap analogs m(7)GpppG and m(7)GTP with 30 and 100 lower affinity than eIF4E. Thus, 4EHP cannot compete with eIF4E for binding to the cap structure of most mRNAs.
Figures
FIGURE 1.
Amino acid alignment of human eIF4E (gi:4503535) with 4EHP (gi:3172339) performed with CLUSTALW (Thompson et al. 1994). Residues that are identical in proteins are shadowed in black and conserved substitutions in gray. The conserved residues that play a role in cap binding by eIF4E (Marcotrigiano et al. 1997), with changes in 4EHP, are labeled above. Stars below the lines indicate the positions of eight evolutionarily conserved tryptophan residues in eIF4E.
FIGURE 2.
Purified on ion-exchange column proteins visualized on a Comassie-stained 15% SDS-PAGE gel. Lane 1, protein marker weight standards (Sigma); lane 2, human eIF4E; lane 3, human eIF4EW56Y; and lane 4, human 4EHP.
FIGURE 3.
(A) Fluorescence titration curves for binding m7GTP to human eIF4E (△), its eIF4EW56Y mutant (●), human 4EHP (■), and fitting residuals. Titrations were carried out in 50 mM HEPES/KOH (pH 7.2), 0.5 mM EDTA, and 1 mM DTT adjusting to I = 150 mM by KCl at 20°C. Protein fluorescence, presented as relative value, was excited at 280 nm and observed at 337 nm. The observed increasing fluorescence signal at a higher concentration of m7GTP originates from free-cap analog emission. (B) Graphical comparison of Gibbs free energy of binding (Δ_G_o) for association of cap analogs with human eIF4E, its mutant, and human 4EHP, calculated from obtained association constants (_K_as).
Similar articles
- Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms.
Rosettani P, Knapp S, Vismara MG, Rusconi L, Cameron AD. Rosettani P, et al. J Mol Biol. 2007 May 4;368(3):691-705. doi: 10.1016/j.jmb.2007.02.019. Epub 2007 Feb 20. J Mol Biol. 2007. PMID: 17368478 - Structural changes of eIF4E upon binding to the mRNA 5' monomethylguanosine and trimethylguanosine Cap.
Rutkowska-Wlodarczyk I, Stepinski J, Dadlez M, Darzynkiewicz E, Stolarski R, Niedzwiecka A. Rutkowska-Wlodarczyk I, et al. Biochemistry. 2008 Mar 4;47(9):2710-20. doi: 10.1021/bi701168z. Epub 2008 Jan 26. Biochemistry. 2008. PMID: 18220364 - Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins.
Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N, Burley SK, Stolarski R. Niedzwiecka A, et al. J Mol Biol. 2002 Jun 7;319(3):615-35. doi: 10.1016/S0022-2836(02)00328-5. J Mol Biol. 2002. PMID: 12054859 - Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives.
Brown CJ, McNae I, Fischer PM, Walkinshaw MD. Brown CJ, et al. J Mol Biol. 2007 Sep 7;372(1):7-15. doi: 10.1016/j.jmb.2007.06.033. Epub 2007 Jun 15. J Mol Biol. 2007. PMID: 17631896 Review. - eIF4E-homologous protein (4EHP): a multifarious cap-binding protein.
Christie M, Igreja C. Christie M, et al. FEBS J. 2023 Jan;290(2):266-285. doi: 10.1111/febs.16275. Epub 2021 Nov 29. FEBS J. 2023. PMID: 34758096 Review.
Cited by
- Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents.
Warminski M, Depaix A, Ziemkiewicz K, Spiewla T, Zuberek J, Drazkowska K, Kedzierska H, Popielec A, Baranowski MR, Sklucka M, Bednarczyk M, Smietanski M, Wolosewicz K, Majewski B, Serwa RA, Nowis D, Golab J, Kowalska J, Jemielity J. Warminski M, et al. Nucleic Acids Res. 2024 Oct 14;52(18):10788-10809. doi: 10.1093/nar/gkae763. Nucleic Acids Res. 2024. PMID: 39248095 Free PMC article. - A threonyl-tRNA synthetase-mediated translation initiation machinery.
Jeong SJ, Park S, Nguyen LT, Hwang J, Lee EY, Giong HK, Lee JS, Yoon I, Lee JH, Kim JH, Kim HK, Kim D, Yang WS, Kim SY, Lee CY, Yu K, Sonenberg N, Kim MH, Kim S. Jeong SJ, et al. Nat Commun. 2019 Mar 22;10(1):1357. doi: 10.1038/s41467-019-09086-0. Nat Commun. 2019. PMID: 30902983 Free PMC article. - eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition.
Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, Borden KL. Osborne MJ, et al. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3877-82. doi: 10.1073/pnas.1216862110. Epub 2013 Feb 19. Proc Natl Acad Sci U S A. 2013. PMID: 23431134 Free PMC article. - Moonlighting translation factors: multifunctionality drives diverse gene regulation.
Farache D, Antine SP, Lee ASY. Farache D, et al. Trends Cell Biol. 2022 Sep;32(9):762-772. doi: 10.1016/j.tcb.2022.03.006. Epub 2022 Apr 21. Trends Cell Biol. 2022. PMID: 35466028 Free PMC article. Review. - mRNA cap regulation in mammalian cell function and fate.
Galloway A, Cowling VH. Galloway A, et al. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):270-279. doi: 10.1016/j.bbagrm.2018.09.011. Epub 2018 Oct 9. Biochim Biophys Acta Gene Regul Mech. 2019. PMID: 30312682 Free PMC article. Review.
References
- Altmann, M., Edery, I., Trachsel, H., Sonenberg, N. Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. Effects on cap binding activity. J. Biol. Chem. 1988;263:17229–17232. - PubMed
- Cai, A.L., Jankowska-Anyszka, M., Centers, A., Chlebicka, L., Stepinski, J., Stolarski, R., Darzynkiewicz, E., Rhoads, R.E. Quantitative assessment of mRNA cap analogues as inhibitors of in vitro translation. Biochemistry. 1999;38:8538–8547. - PubMed
- Cho, P.F., Poulin, F., Cho-Park, Y.A., Cho-Park, I.B., Chicoine, J.D., Lasko, P., Sonenberg, N. A new paradigm for translational control: Inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell. 2005;121:411–423. - PubMed
- Darzynkiewicz, E., Ekiel, I., Tahara, S.M., Seliger, L.S., Shatkin, A.J. Chemical synthesis and characterization of 7-methylguanosine cap analogs. Biochemistry. 1985;24:1701–1707.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous