Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: molecular contributor to cardiovascular protection - PubMed (original) (raw)

Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: molecular contributor to cardiovascular protection

Consuelo Pasten et al. Thromb Res. 2007.

Abstract

Epidemiologic data have indicated that the intake of polyphenols is inversely associated with mortality from cardiovascular disease. Mitogen-activated protein kinases (MAPKs) are ubiquitous signaling proteins that have been associated with gene regulation. This study determined whether polyphenols (catechin and quercetin) activated kinase-signaling cascades that suppress PAI-1 expression and whether this suppression is at the transcription level in human coronary artery endothelial cells (ECs) remains unresolved. ECs were incubated in the absence/presence of polyphenols and RNA and protein were analyzed by real-time PCR and Western blot analysis. MAPKs were analyzed using antibodies to active form of p38, JNK, and ERK1/2. ECs were transiently transfected with a 1.1-kb PAI-1 promoter (pPAI110/luc) and promoter activity were assays after treatment with polyphenols. Catechin and quercetin decreased EC PAI-1 mRNA in a time- and dose-dependent manner, reaching a maximum at 4 and 2 h, respectively. These polyphenols activated EC p38 and ERK1/2 within 2.5 and 5 min, respectively, while maximal JNK activation occurred at 10-15 min. An inhibitor of p38 MAPK had no effect on polyphenol-induced repression of PAI-1. Inhibitors of ERK or JNK prevented polyphenol repression of EC PAI-1 gene expression. Exposing ECs transiently transfected with pPAI110/luc to polyphenols decreased promoter activity 50%. Polyphenols repress EC PAI-1 expression, in part, by activating ERK and JNK signaling pathways and this repression is at transcriptional levels. Thus MAPK seem to play an important role in polyphenol-induce repression of PAI-1 expression in ECs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources