Far-field optical hyperlens magnifying sub-diffraction-limited objects - PubMed (original) (raw)
. 2007 Mar 23;315(5819):1686.
doi: 10.1126/science.1137368.
Affiliations
- PMID: 17379801
- DOI: 10.1126/science.1137368
Far-field optical hyperlens magnifying sub-diffraction-limited objects
Zhaowei Liu et al. Science. 2007.
Abstract
The diffraction limit of light, which is causd by the loss of evanescent waves in the far field that carry high spatial frequency information, limits the resolution of optical lenses to the order of the wavelength of light. We report experimental demonstration of the optical hyperlens for sub-diffraction-limited imaging in the far field. The device magnifies subwavelength objects by transforming the scattered evanescent waves into propagating waves in an anisotropic medium and projects the high-resolution image at far field. The optical hyperlens opens up possibilities in applications such as real-time biomolecular imaging and nanolithography.
Similar articles
- Demonstration of a Hyperlens-integrated Microscope and Super-resolution Imaging.
Lee D, Kim M, So S, Kim I, Yoon G, Kim K, Rho J. Lee D, et al. J Vis Exp. 2017 Sep 8;(127):55968. doi: 10.3791/55968. J Vis Exp. 2017. PMID: 28930989 Free PMC article. - Dark-field hyperlens: Super-resolution imaging of weakly scattering objects.
Repän T, Lavrinenko AV, Zhukovsky SV. Repän T, et al. Opt Express. 2015 Sep 21;23(19):25350-64. doi: 10.1364/OE.23.025350. Opt Express. 2015. PMID: 26406731 - Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing.
Merlin R. Merlin R. Science. 2007 Aug 17;317(5840):927-9. doi: 10.1126/science.1143884. Epub 2007 Jul 12. Science. 2007. PMID: 17626847 - Optical micromanipulations in the non-diffractive regime.
Varghese SS, Gu M. Varghese SS, et al. J Biophotonics. 2010 Apr;3(4):207-15. doi: 10.1002/jbio.200900108. J Biophotonics. 2010. PMID: 20301122 Review. - Metamaterials and imaging.
Kim M, Rho J. Kim M, et al. Nano Converg. 2015;2(1):22. doi: 10.1186/s40580-015-0053-7. Epub 2015 Nov 9. Nano Converg. 2015. PMID: 28191408 Free PMC article. Review.
Cited by
- Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics.
Xie L, Gao W, Shu J, Ying Y, Kono J. Xie L, et al. Sci Rep. 2015 Mar 2;5:8671. doi: 10.1038/srep08671. Sci Rep. 2015. PMID: 25728144 Free PMC article. - Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing.
Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T. Li P, et al. Nat Commun. 2015 Jun 26;6:7507. doi: 10.1038/ncomms8507. Nat Commun. 2015. PMID: 26112474 Free PMC article. - Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials.
Naik GV, Liu J, Kildishev AV, Shalaev VM, Boltasseva A. Naik GV, et al. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8834-8. doi: 10.1073/pnas.1121517109. Epub 2012 May 18. Proc Natl Acad Sci U S A. 2012. PMID: 22611188 Free PMC article. - Free space super focusing using all dielectric hyperbolic metamaterial.
Salama NA, Desouky M, Obayya SSA, Swillam MA. Salama NA, et al. Sci Rep. 2020 Jul 13;10(1):11529. doi: 10.1038/s41598-020-61639-2. Sci Rep. 2020. PMID: 32661281 Free PMC article. - Effective medium theory for anisotropic metamaterials.
Zhang X, Wu Y. Zhang X, et al. Sci Rep. 2015 Jan 20;5:7892. doi: 10.1038/srep07892. Sci Rep. 2015. PMID: 25599847 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources