Unsupervised segmentation of continuous genomic data - PubMed (original) (raw)
Unsupervised segmentation of continuous genomic data
Nathan Day et al. Bioinformatics. 2007.
Abstract
The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an optional wavelet-based smoothing operation. HMMSeg is capable of handling multiple datasets simultaneously, rendering it ideal for integrative analysis of expression, phylogenetic and functional genomic data.
Availability: http://noble.gs.washington.edu/proj/hmmseg
Similar articles
- A segmentation/clustering model for the analysis of array CGH data.
Picard F, Robin S, Lebarbier E, Daudin JJ. Picard F, et al. Biometrics. 2007 Sep;63(3):758-66. doi: 10.1111/j.1541-0420.2006.00729.x. Biometrics. 2007. PMID: 17825008 - BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data.
Marioni JC, Thorne NP, Tavaré S. Marioni JC, et al. Bioinformatics. 2006 May 1;22(9):1144-6. doi: 10.1093/bioinformatics/btl089. Epub 2006 Mar 13. Bioinformatics. 2006. PMID: 16533818 - A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge.
Du J, Rozowsky JS, Korbel JO, Zhang ZD, Royce TE, Schultz MH, Snyder M, Gerstein M. Du J, et al. Bioinformatics. 2006 Dec 15;22(24):3016-24. doi: 10.1093/bioinformatics/btl515. Epub 2006 Oct 12. Bioinformatics. 2006. PMID: 17038339 - Automated querying of genome databases.
Schattner P. Schattner P. PLoS Comput Biol. 2007 Jan 26;3(1):e1. doi: 10.1371/journal.pcbi.0030001. PLoS Comput Biol. 2007. PMID: 17257048 Free PMC article. Review. No abstract available. - An introduction to hidden Markov models.
Schuster-Böckler B, Bateman A. Schuster-Böckler B, et al. Curr Protoc Bioinformatics. 2007 Jun;Appendix 3:Appendix 3A. doi: 10.1002/0471250953.bia03as18. Curr Protoc Bioinformatics. 2007. PMID: 18428778 Review.
Cited by
- Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem Cells.
Banerjee S, Zhu H, Tang M, Feng WC, Wu X, Xie H. Banerjee S, et al. Front Genet. 2019 Jan 15;9:731. doi: 10.3389/fgene.2018.00731. eCollection 2018. Front Genet. 2019. PMID: 30697231 Free PMC article. - A wavelet approach to detect enriched regions and explore epigenomic landscapes.
Nguyen N, Vo A, Won KJ. Nguyen N, et al. J Comput Biol. 2014 Nov;21(11):846-54. doi: 10.1089/cmb.2014.0095. Epub 2014 Jul 29. J Comput Biol. 2014. PMID: 25072902 Free PMC article. - Identification of copy number variants in whole-genome data using Reference Coverage Profiles.
Glusman G, Severson A, Dhankani V, Robinson M, Farrah T, Mauldin DE, Stittrich AB, Ament SA, Roach JC, Brunkow ME, Bodian DL, Vockley JG, Shmulevich I, Niederhuber JE, Hood L. Glusman G, et al. Front Genet. 2015 Feb 17;6:45. doi: 10.3389/fgene.2015.00045. eCollection 2015. Front Genet. 2015. PMID: 25741365 Free PMC article. - iSeg: an efficient algorithm for segmentation of genomic and epigenomic data.
Girimurugan SB, Liu Y, Lung PY, Vera DL, Dennis JH, Bass HW, Zhang J. Girimurugan SB, et al. BMC Bioinformatics. 2018 Apr 11;19(1):131. doi: 10.1186/s12859-018-2140-3. BMC Bioinformatics. 2018. PMID: 29642840 Free PMC article. - Exploratory analysis of genomic segmentations with Segtools.
Buske OJ, Hoffman MM, Ponts N, Le Roch KG, Noble WS. Buske OJ, et al. BMC Bioinformatics. 2011 Oct 26;12:415. doi: 10.1186/1471-2105-12-415. BMC Bioinformatics. 2011. PMID: 22029426 Free PMC article.
Publication types
MeSH terms
Grants and funding
- U54 HG004592/HG/NHGRI NIH HHS/United States
- R01 GM071923/GM/NIGMS NIH HHS/United States
- R01 GM71852/GM/NIGMS NIH HHS/United States
- U01 HG003161/HG/NHGRI NIH HHS/United States
LinkOut - more resources
Full Text Sources