In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography - PubMed (original) (raw)
. 2007 Apr;48(4):1808-14.
doi: 10.1167/iovs.06-0815.
Affiliations
- PMID: 17389515
- DOI: 10.1167/iovs.06-0815
In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography
Marco Ruggeri et al. Invest Ophthalmol Vis Sci. 2007 Apr.
Abstract
Purpose: To demonstrate the application of high-resolution spectral-domain optical coherence tomography (SD-OCT) for three-dimensional (3D) retinal imaging of small animals and quantitative retinal information extraction using 3D segmentation of the OCT images.
Methods: A high-resolution SD-OCT system was built for in vivo imaging of rodent retina. OCT fundus images similar to those acquired with a scanning laser ophthalmoscope (SLO) were constructed from the measured OCT data, which provided precise spatial registration of the OCT cross-sectional images on the fundus. A 3D segmentation algorithm was developed for calculation of the retinal thickness map. OCT images were compared by histologic examination.
Results: High-quality OCT images of the retinas of mice (B6/SJLF2 for normal retina, rhodopsin-deficient Rho(-/-) for photoreceptor degeneration, and LH(BETA)T(AG) for retinoblastoma) and rat (Wistar) were acquired. The OCT images compared well with histology. Not only was a 3D image of the tumor in a retinoblastoma mouse model successfully imaged in vivo but the tumor volume was extracted from the 3D image. Retinal thickness maps were calculated that enabled successful quantitative comparison of the retinal thickness distribution between the normal (202.3 +/- 9.3 microm) and the degenerative (102.7 +/- 12.6 microm) mouse retina.
Conclusions: High-resolution spectral-domain OCT provides unprecedented high-quality 2D and 3D in vivo visualization of retinal structures of mouse and rat models of retinal diseases. With the capability of 3D quantitative information extraction and precise spatial registration, the OCT system made possible longitudinal study of ocular diseases that has been impossible to conduct.
Similar articles
- Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse.
Li Q, Timmers AM, Hunter K, Gonzalez-Pola C, Lewin AS, Reitze DH, Hauswirth WW. Li Q, et al. Invest Ophthalmol Vis Sci. 2001 Nov;42(12):2981-9. Invest Ophthalmol Vis Sci. 2001. PMID: 11687546 - Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
Sakamoto A, Hangai M, Yoshimura N. Sakamoto A, et al. Ophthalmology. 2008 Jun;115(6):1071-1078.e7. doi: 10.1016/j.ophtha.2007.09.001. Epub 2007 Dec 3. Ophthalmology. 2008. PMID: 18061270 - Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.
Menke MN, Dabov S, Sturm V. Menke MN, et al. Br J Ophthalmol. 2008 Nov;92(11):1492-7. doi: 10.1136/bjo.2008.141242. Epub 2008 Aug 14. Br J Ophthalmol. 2008. PMID: 18703554 - Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems.
Kiernan DF, Mieler WF, Hariprasad SM. Kiernan DF, et al. Am J Ophthalmol. 2010 Jan;149(1):18-31. doi: 10.1016/j.ajo.2009.08.037. Am J Ophthalmol. 2010. PMID: 20103039 Review. - State-of-the-art retinal optical coherence tomography.
Drexler W, Fujimoto JG. Drexler W, et al. Prog Retin Eye Res. 2008 Jan;27(1):45-88. doi: 10.1016/j.preteyeres.2007.07.005. Epub 2007 Aug 11. Prog Retin Eye Res. 2008. PMID: 18036865 Review.
Cited by
- Application of the Full-Width-at-Half-Maximum Image Segmentation Method to Analyse Retinal Vascular Changes in Patients with Diabetic Retinopathy.
Xu BL, Li YJ, Zhou WL, Zhan HJ, Lu JY, Tong YH. Xu BL, et al. J Healthc Eng. 2022 Aug 8;2022:6726499. doi: 10.1155/2022/6726499. eCollection 2022. J Healthc Eng. 2022. PMID: 39296953 Free PMC article. Review. - Age-Related Retinal Layer Thickness Changes Measured by OCT in APPNL-F/NL-F Mice: Implications for Alzheimer's Disease.
Sánchez-Puebla L, de Hoz R, Salobrar-García E, Arias-Vázquez A, González-Jiménez M, Ramírez AI, Fernández-Albarral JA, Matamoros JA, Elvira-Hurtado L, Saido TC, Saito T, Nieto Vaquero C, Cuartero MI, Moro MA, Salazar JJ, López-Cuenca I, Ramírez JM. Sánchez-Puebla L, et al. Int J Mol Sci. 2024 Jul 27;25(15):8221. doi: 10.3390/ijms25158221. Int J Mol Sci. 2024. PMID: 39125789 Free PMC article. - Design and Biocompatibility of a Novel, Flexible Artificial Cornea.
Li G, Aldave AJ, Amescua G, Colby KA, Cortina MS, de la Cruz J, Parel JA, Schmiedel TB, Akpek EK. Li G, et al. Transl Vis Sci Technol. 2024 May 1;13(5):19. doi: 10.1167/tvst.13.5.19. Transl Vis Sci Technol. 2024. PMID: 38776107 Free PMC article. - Comparative In Vivo Imaging of Retinal Structures in Tree Shrews, Humans, and Mice.
Grannonico M, Miller DA, Liu M, Krause MA, Savier E, Erisir A, Netland PA, Cang J, Zhang HF, Liu X. Grannonico M, et al. eNeuro. 2024 Mar 27;11(3):ENEURO.0373-23.2024. doi: 10.1523/ENEURO.0373-23.2024. Print 2024 Mar. eNeuro. 2024. PMID: 38538082 Free PMC article. - Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography.
Barroso Á, Ketelhut S, Nettels-Hackert G, Heiduschka P, Del Amor R, Naranjo V, Kemper B, Schnekenburger J. Barroso Á, et al. Biomed Opt Express. 2023 Aug 2;14(9):4421-4438. doi: 10.1364/BOE.494271. eCollection 2023 Sep 1. Biomed Opt Express. 2023. PMID: 37791268 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases