Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein - PubMed (original) (raw)
. 2007 May 25;282(21):15597-605.
doi: 10.1074/jbc.M610893200. Epub 2007 Mar 29.
Affiliations
- PMID: 17395592
- DOI: 10.1074/jbc.M610893200
Free article
Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein
Marco Bisaglia et al. J Biol Chem. 2007.
Free article
Abstract
Oxidative stress appears to be directly involved in the pathogenesis of several neurodegenerative disorders, including Alzheimer and Parkinson diseases. Nigral dopaminergic neurons are particularly exposed to oxidative stress because a pathological accumulation of cytosolic dopamine gives rise to various toxic molecules, including free radicals and reactive quinones. These latter species can react with proteins preventing them from exerting their physiological functions. Among the possible targets of quinones, alpha-synuclein is of primary interest because of its direct involvement in dopamine metabolism. Contrary to the neurotoxic processes, neuromelanin synthesis seems to play a protective role by its ability to sequester a variety of potentially damaging substances. In this study, we carried out a kinetic and structural analysis of the early oxidation products of dopamine. Specifically, considering the potential high toxicity of aminochrome for both cells and mitochondria, we focused our attention on its rearrangement to 5,6-dihydroxyindole. After the spectroscopic characterization of the products derived from the oxidation of dopamine, the structural information obtained was used to analyze the reactivity of quinones toward alpha-synuclein. Our results suggest that indole-5,6-quinone, rather than dopamine-o-quinone or aminochrome, is the reactive species. We propose that the observed reactivity could represent a general reaction pathway whenever cysteinyl residues are absent in proteins or if they are sterically protected.
Similar articles
- Protective and toxic roles of dopamine in Parkinson's disease.
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Segura-Aguilar J, et al. J Neurochem. 2014 Jun;129(6):898-915. doi: 10.1111/jnc.12686. Epub 2014 Mar 18. J Neurochem. 2014. PMID: 24548101 Review. - Dopamine quinones interact with alpha-synuclein to form unstructured adducts.
Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, Bubacco L. Bisaglia M, et al. Biochem Biophys Res Commun. 2010 Apr 2;394(2):424-8. doi: 10.1016/j.bbrc.2010.03.044. Epub 2010 Mar 10. Biochem Biophys Res Commun. 2010. PMID: 20226175 - Preventing effects of a novel anti-parkinsonian agent zonisamide on dopamine quinone formation.
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K, Ogawa N, Murata M. Asanuma M, et al. Neurosci Res. 2008 Jan;60(1):106-13. doi: 10.1016/j.neures.2007.10.002. Epub 2007 Oct 10. Neurosci Res. 2008. PMID: 18022268 - The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease.
Tessari I, Bisaglia M, Valle F, Samorì B, Bergantino E, Mammi S, Bubacco L. Tessari I, et al. J Biol Chem. 2008 Jun 13;283(24):16808-17. doi: 10.1074/jbc.M709014200. Epub 2008 Apr 4. J Biol Chem. 2008. PMID: 18390556 - Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration.
Zhang S, Wang R, Wang G. Zhang S, et al. ACS Chem Neurosci. 2019 Feb 20;10(2):945-953. doi: 10.1021/acschemneuro.8b00454. Epub 2019 Jan 17. ACS Chem Neurosci. 2019. PMID: 30592597 Review.
Cited by
- The Chemistry of Neurodegeneration: Kinetic Data and Their Implications.
Pavlin M, Repič M, Vianello R, Mavri J. Pavlin M, et al. Mol Neurobiol. 2016 Jul;53(5):3400-3415. doi: 10.1007/s12035-015-9284-1. Epub 2015 Jun 18. Mol Neurobiol. 2016. PMID: 26081152 Review. - Glutathione conjugates with dopamine-derived quinones to form reactive or non-reactive glutathione-conjugates.
Zhou ZD, Lim TM. Zhou ZD, et al. Neurochem Res. 2010 Nov;35(11):1805-18. doi: 10.1007/s11064-010-0247-7. Epub 2010 Aug 19. Neurochem Res. 2010. PMID: 20721623 - Dopamine-Coated Carbon Nanodots: A Supramolecular Approach to Polydopamine Composite.
Nicosia A, Mineo P, Micali N, Villari V. Nicosia A, et al. Int J Mol Sci. 2023 Oct 20;24(20):15384. doi: 10.3390/ijms242015384. Int J Mol Sci. 2023. PMID: 37895064 Free PMC article. - Single-neuron neurodegeneration as a degenerative model for Parkinson's disease.
Huenchuguala S, Segura-Aguilar J. Huenchuguala S, et al. Neural Regen Res. 2024 Mar;19(3):529-535. doi: 10.4103/1673-5374.380878. Neural Regen Res. 2024. PMID: 37721280 Free PMC article. Review. - Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals.
Salomäki M, Ouvinen T, Marttila L, Kivelä H, Leiro J, Mäkilä E, Lukkari J. Salomäki M, et al. J Phys Chem B. 2019 Mar 21;123(11):2513-2524. doi: 10.1021/acs.jpcb.8b11994. Epub 2019 Mar 12. J Phys Chem B. 2019. PMID: 30813731 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources