Nitric oxide and superoxide: interference with hypoxic signaling - PubMed (original) (raw)
Review
. 2007 Jul 15;75(2):275-82.
doi: 10.1016/j.cardiores.2007.03.005. Epub 2007 Mar 14.
Affiliations
- PMID: 17412315
- DOI: 10.1016/j.cardiores.2007.03.005
Review
Nitric oxide and superoxide: interference with hypoxic signaling
Bernhard Brüne et al. Cardiovasc Res. 2007.
Abstract
Sensing and responding to changes in oxygen partial pressure assures that the cellular oxygen supply is tightly controlled in order to balance the risks of oxidative damage vs. oxygen deficiency. The hypoxia inducible factor (HIF) regulatory system is controlled by prolyl hydroxylases (PHDs), the von Hippel Lindau protein (pVHL), and the 26S proteasome and transduces changes in oxygenation to adequate intracellular adaptive responses. A functional HIF response requires stabilization of the alpha-subunit, e.g. HIF-1alpha, during hypoxia and dimerization with HIF-1beta, to drive target gene activation. Intriguingly, high concentrations of nitric oxide (NO) stabilize HIF-1alpha and thus mimic a hypoxic response under normoxia. Mechanistically, NO blocks PHD activity and attenuates proline hydroxylation of HIF-1alpha. This causes dissociation of pVHL from HIF-1alpha and, consequently, HIF-1alpha accumulates because proteasomal destruction is impaired. However, during hypoxia low concentrations of NO facilitate destruction of HIF-1alpha and thus reverse HIF signaling. Under these conditions, NO impairs respiration and avoids oxygen gradients that limit PHD activity. An additional layer of complexity comprises the interaction of NO with O(2)(-). Signaling qualities attributed to NO are antagonized by compensatory flux rates of O(2)(-) and vice versa to adjust levels of HIF-1alpha under normoxia and hypoxia. The liaison of NO and hypoxia is versatile and ranges from courting to matrimony and divorce.
Similar articles
- Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation--implications for prolyl hydroxylase activity and iron.
Callapina M, Zhou J, Schnitzer S, Metzen E, Lohr C, Deitmer JW, Brüne B. Callapina M, et al. Exp Cell Res. 2005 May 15;306(1):274-84. doi: 10.1016/j.yexcr.2005.02.018. Epub 2005 Mar 20. Exp Cell Res. 2005. PMID: 15878351 - NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species.
Callapina M, Zhou J, Schmid T, Köhl R, Brüne B. Callapina M, et al. Free Radic Biol Med. 2005 Oct 1;39(7):925-36. doi: 10.1016/j.freeradbiomed.2005.05.009. Free Radic Biol Med. 2005. PMID: 16140212 - Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2.
Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Berchner-Pfannschmidt U, et al. J Biol Chem. 2007 Jan 19;282(3):1788-96. doi: 10.1074/jbc.M607065200. Epub 2006 Oct 23. J Biol Chem. 2007. PMID: 17060326 - Oxygen-sensing under the influence of nitric oxide.
Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J. Berchner-Pfannschmidt U, et al. Cell Signal. 2010 Mar;22(3):349-56. doi: 10.1016/j.cellsig.2009.10.004. Cell Signal. 2010. PMID: 19861159 Review. - Hypoxia-inducible factor 1 (HIF-1) pathway.
Semenza GL. Semenza GL. Sci STKE. 2007 Oct 9;2007(407):cm8. doi: 10.1126/stke.4072007cm8. Sci STKE. 2007. PMID: 17925579 Review.
Cited by
- Modeling the neurovascular niche: murine strain differences mimic the range of responses to chronic hypoxia in the premature newborn.
Li Q, Michaud M, Stewart W, Schwartz M, Madri JA. Li Q, et al. J Neurosci Res. 2008 May 1;86(6):1227-42. doi: 10.1002/jnr.21597. J Neurosci Res. 2008. PMID: 18092360 Free PMC article. - Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease.
Olson N, van der Vliet A. Olson N, et al. Nitric Oxide. 2011 Aug 1;25(2):125-37. doi: 10.1016/j.niox.2010.12.010. Epub 2011 Jan 1. Nitric Oxide. 2011. PMID: 21199675 Free PMC article. Review. - Glyceryl trinitrate inhibits hypoxia-induced release of soluble fms-like tyrosine kinase-1 and endoglin from placental tissues.
Barsoum IB, Renaud SJ, Graham CH. Barsoum IB, et al. Am J Pathol. 2011 Jun;178(6):2888-96. doi: 10.1016/j.ajpath.2011.02.013. Am J Pathol. 2011. PMID: 21641407 Free PMC article. - Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis.
He C, Larson-Casey JL, Gu L, Ryan AJ, Murthy S, Carter AB. He C, et al. Am J Respir Cell Mol Biol. 2016 Jul;55(1):58-71. doi: 10.1165/rcmb.2015-0183OC. Am J Respir Cell Mol Biol. 2016. PMID: 26699812 Free PMC article. - Nitric oxide induces HIF-1α stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing.
Riaño A, Ortiz-Masià D, Velázquez M, Calatayud S, Esplugues JV, Barrachina MD. Riaño A, et al. J Gastroenterol. 2011 May;46(5):565-76. doi: 10.1007/s00535-011-0374-1. Epub 2011 Feb 9. J Gastroenterol. 2011. PMID: 21305324
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources