Shaker, Shal, Shab, and Shaw express independent K+ current systems - PubMed (original) (raw)
Shaker, Shal, Shab, and Shaw express independent K+ current systems
M Covarrubias et al. Neuron. 1991 Nov.
Abstract
Although many K+ channel genes encoding homologous subunits have been cloned, a central question remains: how do these subunits associate to produce the diversity of K+ currents observed in living cells? Previous work has shown that different subunits encoded by the Shaker gene subfamily are able to form heteromultimers, which add to the diversity of currents. However, the unrestrained mixing of subunits from all genes to form hybrid channels would be undesirable for some cells that clearly require functionally discrete K+ currents. We show that Drosophila Shaker, Shal, Shab, and Shaw subunits form functional homomultimers, but that a molecular barrier to heteropolymerization is present. Coexpression of all four K+ channel systems does not alter their individual properties in any way. These experiments also demonstrate that multiple, independent A-current systems together with multiple, independent delayed rectifier systems can coexist in single cells.
Similar articles
- K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse.
Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L. Wei A, et al. Science. 1990 May 4;248(4955):599-603. doi: 10.1126/science.2333511. Science. 1990. PMID: 2333511 - The major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab.
Tsunoda S, Salkoff L. Tsunoda S, et al. J Neurosci. 1995 Jul;15(7 Pt 2):5209-21. doi: 10.1523/JNEUROSCI.15-07-05209.1995. J Neurosci. 1995. PMID: 7623146 Free PMC article. - Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.
Tsunoda S, Salkoff L. Tsunoda S, et al. J Neurosci. 1995 Mar;15(3 Pt 1):1741-54. doi: 10.1523/JNEUROSCI.15-03-01741.1995. J Neurosci. 1995. PMID: 7891132 Free PMC article. - An essential 'set' of K+ channels conserved in flies, mice and humans.
Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A. Salkoff L, et al. Trends Neurosci. 1992 May;15(5):161-6. doi: 10.1016/0166-2236(92)90165-5. Trends Neurosci. 1992. PMID: 1377421 Review. - Potassium channels in Drosophila: historical breakthroughs, significance, and perspectives.
Frolov RV, Bagati A, Casino B, Singh S. Frolov RV, et al. J Neurogenet. 2012 Sep;26(3-4):275-90. doi: 10.3109/01677063.2012.744990. J Neurogenet. 2012. PMID: 23181728 Review.
Cited by
- Ionic channel function in action potential generation: current perspective.
Baranauskas G. Baranauskas G. Mol Neurobiol. 2007 Apr;35(2):129-50. doi: 10.1007/s12035-007-8001-0. Mol Neurobiol. 2007. PMID: 17917103 Review. - Intact Drosophila central nervous system cellular quantitation reveals sexual dimorphism.
Jiao W, Spreemann G, Ruchti E, Banerjee S, Vernon S, Shi Y, Stowers RS, Hess K, McCabe BD. Jiao W, et al. Elife. 2022 Jul 8;11:e74968. doi: 10.7554/eLife.74968. Elife. 2022. PMID: 35801638 Free PMC article. - Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes.
Xu H, Dixon JE, Barry DM, Trimmer JS, Merlie JP, McKinnon D, Nerbonne JM. Xu H, et al. J Gen Physiol. 1996 Nov;108(5):405-19. doi: 10.1085/jgp.108.5.405. J Gen Physiol. 1996. PMID: 8923266 Free PMC article. - Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium.
Nerbonne JM. Nerbonne JM. J Physiol. 2000 Jun 1;525 Pt 2(Pt 2):285-98. doi: 10.1111/j.1469-7793.2000.t01-1-00285.x. J Physiol. 2000. PMID: 10835033 Free PMC article. Review. - A developmental model for generating frequency maps in the reptilian and avian cochleas.
Wu YC, Fettiplace R. Wu YC, et al. Biophys J. 1996 Jun;70(6):2557-70. doi: 10.1016/S0006-3495(96)79827-2. Biophys J. 1996. PMID: 8744295 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases