Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote - PubMed (original) (raw)
. 2007 Aug;116(4):403-15.
doi: 10.1007/s00412-007-0106-8. Epub 2007 Apr 20.
Affiliations
- PMID: 17447080
- DOI: 10.1007/s00412-007-0106-8
Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote
Aline V Probst et al. Chromosoma. 2007 Aug.
Abstract
In mammals, paternal and maternal pronuclei undergo profound chromatin reorganisation upon fertilisation. How these events are orchestrated within centromeric regions to ensure proper chromosome segregation in the following cellular divisions is unknown. In this study, we followed the dynamic unfolding of the centromeric regions, i.e. the centric and pericentric satellite repeats, by DNA fluorescent in situ hybridization (FISH) during the first cell cycle up to the two-cell stage. The distinct chromatin from female and male gametes both undergo rapid remodelling and reach a zygotic organisation in which the satellites occupy restricted spatial domains surrounding the nucleolar precursor body. A transition from this zygotic to a somatic cell-like organisation takes place during the two-cell stage. Using 3D immuno-FISH, we find that, whereas maternal pericentric regions are marked with H3K9me3, H4K20me3 and HP1beta, paternal ones only showed HP1beta marking. Thus, despite different chromatin features, male and female pronuclei organise their centromeric regions in the same way within the nuclei to align chromosomes on the metaphase plate and segregate them appropriately. Our findings highlight the importance of ensuring a proper centromere function while preserving the distinction of parental genome origin during the return to totipotency in the zygote.
Similar articles
- Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.
van de Werken C, Avo Santos M, Laven JS, Eleveld C, Fauser BC, Lens SM, Baart EB. van de Werken C, et al. Hum Reprod. 2015 Oct;30(10):2275-91. doi: 10.1093/humrep/dev186. Epub 2015 Jul 29. Hum Reprod. 2015. PMID: 26223676 - Mouse centric and pericentric satellite repeats form distinct functional heterochromatin.
Guenatri M, Bailly D, Maison C, Almouzni G. Guenatri M, et al. J Cell Biol. 2004 Aug 16;166(4):493-505. doi: 10.1083/jcb.200403109. Epub 2004 Aug 9. J Cell Biol. 2004. PMID: 15302854 Free PMC article. - Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA.
Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA. Lam AL, et al. Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4186-91. doi: 10.1073/pnas.0507947103. Epub 2006 Mar 6. Proc Natl Acad Sci U S A. 2006. PMID: 16537506 Free PMC article. - Pericentric heterochromatin: dynamic organization during early development in mammals.
Probst AV, Almouzni G. Probst AV, et al. Differentiation. 2008 Jan;76(1):15-23. doi: 10.1111/j.1432-0436.2007.00220.x. Epub 2007 Sep 6. Differentiation. 2008. PMID: 17825083 Review. - Domain organization at the centromere and neocentromere.
Choo KH. Choo KH. Dev Cell. 2001 Aug;1(2):165-77. doi: 10.1016/s1534-5807(01)00028-4. Dev Cell. 2001. PMID: 11702777 Review.
Cited by
- H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos.
Matsuwaka M, Kumon M, Inoue A. Matsuwaka M, et al. Nat Cell Biol. 2025 Jan;27(1):28-38. doi: 10.1038/s41556-024-01553-1. Epub 2024 Oct 31. Nat Cell Biol. 2025. PMID: 39482357 - Diverse heterochromatin states restricting cell identity and reprogramming.
McCarthy RL, Zhang J, Zaret KS. McCarthy RL, et al. Trends Biochem Sci. 2023 Jun;48(6):513-526. doi: 10.1016/j.tibs.2023.02.007. Epub 2023 Mar 27. Trends Biochem Sci. 2023. PMID: 36990958 Free PMC article. Review. - 5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote.
Salvaing J, Aguirre-Lavin T, Boulesteix C, Lehmann G, Debey P, Beaujean N. Salvaing J, et al. PLoS One. 2012;7(5):e38156. doi: 10.1371/journal.pone.0038156. Epub 2012 May 31. PLoS One. 2012. PMID: 22693592 Free PMC article. - Transplantation of nucleoli into human zygotes: not as simple as expected?
Fulka J Jr, Langerova A, Loi P, Martinkova S, Fulka H. Fulka J Jr, et al. J Assist Reprod Genet. 2011 May;28(5):385-9. doi: 10.1007/s10815-011-9565-1. Epub 2011 Apr 8. J Assist Reprod Genet. 2011. PMID: 21476142 Free PMC article. No abstract available. - Dynamic changes in H1 subtype composition during epigenetic reprogramming.
Izzo A, Ziegler-Birling C, Hill PWS, Brondani L, Hajkova P, Torres-Padilla ME, Schneider R. Izzo A, et al. J Cell Biol. 2017 Oct 2;216(10):3017-3028. doi: 10.1083/jcb.201611012. Epub 2017 Aug 9. J Cell Biol. 2017. PMID: 28794128 Free PMC article.
References
- Mol Reprod Dev. 2003 Nov;66(3):279-90 - PubMed
- Dev Biol. 1993 Apr;156(2):552-6 - PubMed
- Int J Dev Biol. 2002 May;46(3):317-20 - PubMed
- Dev Biol. 2002 Jan 1;241(1):172-82 - PubMed
- Exp Cell Res. 1995 Aug;219(2):604-11 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources