Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time - PubMed (original) (raw)
. 2007 May 29;46(21):6183-93.
doi: 10.1021/bi602616t. Epub 2007 May 4.
Affiliations
- PMID: 17477547
- DOI: 10.1021/bi602616t
Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time
Wolfgang Kress et al. Biochemistry. 2007.
Abstract
The ClpAP chaperone-protease complex is active as a cylindrically shaped oligomeric complex built of the proteolytic ClpP double ring as the core of the complex and two ClpA hexamers associating with the ends of the core cylinder. The ClpA chaperone belongs to the larger family of AAA+ ATPases and is responsible for preparing protein substrates for degradation by ClpP. Here, we study in real time using fluorescence and light scattering stopped-flow methods the complete assembly pathway of this bacterial chaperone-protease complex consisting of ATP-induced ClpA hexamer formation and the subsequent association of ClpA hexamers with the ClpP core cylinder. We provide evidence that ClpA assembles into hexamers via a tetrameric intermediate and that hexamerization coincides with the appearance of ATPase activity. While ATP-induced oligomerization of ClpA is a prerequisite for binding of ClpA to ClpP, the kinetics of ClpA hexamer formation are not influenced by the presence of ClpP. Models for ClpA hexamerization and ClpA-ClpP association are presented along with rate parameters obtained from numerical fitting procedures. The hexamerization kinetics show that the tetrameric intermediate transiently accumulates, forming rapidly at early time points and then decaying at a slower rate to generate the hexamer. The association of assembled ClpA hexamers with the ClpP core cylinder displays cooperativity, supporting the coexistence of interchanging ClpP conformations with different affinities for ClpA.
Similar articles
- ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
Ortega J, Lee HS, Maurizi MR, Steven AC. Ortega J, et al. J Struct Biol. 2004 Apr-May;146(1-2):217-26. doi: 10.1016/j.jsb.2003.11.023. J Struct Biol. 2004. PMID: 15037252 - The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.
Veronese PK, Stafford RP, Lucius AL. Veronese PK, et al. Biochemistry. 2009 Oct 6;48(39):9221-33. doi: 10.1021/bi900935q. Biochemistry. 2009. PMID: 19650643 - At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease.
Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, Steven AC. Beuron F, et al. J Struct Biol. 1998 Nov;123(3):248-59. doi: 10.1006/jsbi.1998.4039. J Struct Biol. 1998. PMID: 9878579 - ClpP: a structurally dynamic protease regulated by AAA+ proteins.
Alexopoulos JA, Guarné A, Ortega J. Alexopoulos JA, et al. J Struct Biol. 2012 Aug;179(2):202-10. doi: 10.1016/j.jsb.2012.05.003. Epub 2012 May 14. J Struct Biol. 2012. PMID: 22595189 Review. - Protease Ti (Clp), a multi-component ATP-dependent protease in Escherichia coli.
Chung CH, Seol JH, Kang MS. Chung CH, et al. Biol Chem. 1996 Sep;377(9):549-54. Biol Chem. 1996. PMID: 9067252 Review.
Cited by
- Hexameric assembly of the proteasomal ATPases is templated through their C termini.
Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D. Park S, et al. Nature. 2009 Jun 11;459(7248):866-70. doi: 10.1038/nature08065. Nature. 2009. PMID: 19412160 Free PMC article. - Assembly reflects evolution of protein complexes.
Levy ED, Boeri Erba E, Robinson CV, Teichmann SA. Levy ED, et al. Nature. 2008 Jun 26;453(7199):1262-5. doi: 10.1038/nature06942. Epub 2008 Jun 18. Nature. 2008. PMID: 18563089 Free PMC article. - Optimizing ring assembly reveals the strength of weak interactions.
Deeds EJ, Bachman JA, Fontana W. Deeds EJ, et al. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2348-53. doi: 10.1073/pnas.1113095109. Epub 2012 Jan 30. Proc Natl Acad Sci U S A. 2012. PMID: 22308356 Free PMC article. - Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco-Rubisco activase interaction.
Wachter RM, Salvucci ME, Carmo-Silva AE, Barta C, Genkov T, Spreitzer RJ. Wachter RM, et al. Photosynth Res. 2013 Nov;117(1-3):557-66. doi: 10.1007/s11120-013-9827-0. Epub 2013 Apr 24. Photosynth Res. 2013. PMID: 23613007 - Conformational rearrangements of the C1 ring in KaiC measure the timing of assembly with KaiB.
Mukaiyama A, Furuike Y, Abe J, Koda SI, Yamashita E, Kondo T, Akiyama S. Mukaiyama A, et al. Sci Rep. 2018 Jun 11;8(1):8803. doi: 10.1038/s41598-018-27131-8. Sci Rep. 2018. PMID: 29892030 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases