Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? - PubMed (original) (raw)
Mary Bartlett Bunge, James W Fawcett, Robert G Grossman, Jon H Kaas, Roger Lemon, Irin Maier, John Martin, Randolph J Nudo, Almudena Ramon-Cueto, Eric M Rouiller, Lisa Schnell, Thierry Wannier, Martin E Schwab, V Reggie Edgerton
Affiliations
- PMID: 17479102
- PMCID: PMC3245971
- DOI: 10.1038/nm1595
Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?
Grégoire Courtine et al. Nat Med. 2007 May.
No abstract available
Conflict of interest statement
COMPETING INTERESTS STATEMENT
The authors declare no competing financial interests.
Figures
Figure 1
Relationship between the development of the corticospinal tract and the emergence of fine motor control abilities. In rodents, there are no direct connections between corticospinal neurons and the cervical motoneurons that innervate forelimb muscles—interneurons relay cortical input to motor neurons. In the evolution of the corticospinal tract in nonhuman primates and humans, direct corticospinal connections with motoneurons have emerged, together with an increase in the size and number of the corticospinal fibers. Accordingly, the size of the excitatory postsynaptic potential (EPSP) elicited by cortical neurons on motoneurons has increased during primate evolution. Furthermore, most of the corticospinal tract fibers in rodents travel in the dorsal columns. In contrast, the primate corticospinal tract is mostly located in the lateral columns, and a significant proportion of corticospinal fibers (10–20%) descend ipsilaterally. Development of the corticospinal tract correlates with the improvement in the index of dexterity (as quantified in ref. 30), particularly in the ability to perform finger-thumb precision grip. Figure adapted from ref. .
Similar articles
- The cat model of spinal injury.
Rossignol S, Chau C, Giroux N, Brustein E, Bouyer L, Marcoux J, Langlet C, Barthelémy D, Provencher J, Leblond H, Barbeau H, Reader TA. Rossignol S, et al. Prog Brain Res. 2002;137:151-68. doi: 10.1016/s0079-6123(02)37014-6. Prog Brain Res. 2002. PMID: 12440366 Review. No abstract available. - Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system.
Kastner A, Gauthier P. Kastner A, et al. Exp Neurol. 2008 Oct;213(2):249-56. doi: 10.1016/j.expneurol.2008.07.008. Epub 2008 Jul 16. Exp Neurol. 2008. PMID: 18675802 Review. - Consequences of spinal cord lesions upon motor function, with special reference to locomotor activity.
Eidelberg E. Eidelberg E. Prog Neurobiol. 1981;17(3):185-202. doi: 10.1016/0301-0082(81)90013-7. Prog Neurobiol. 1981. PMID: 6798636 Review. No abstract available. - Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies?
Jordan LM, Schmidt BJ. Jordan LM, et al. Prog Brain Res. 2002;137:125-39. doi: 10.1016/s0079-6123(02)37012-2. Prog Brain Res. 2002. PMID: 12440364 Review. No abstract available. - Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury.
Nout YS, Rosenzweig ES, Brock JH, Strand SC, Moseanko R, Hawbecker S, Zdunowski S, Nielson JL, Roy RR, Courtine G, Ferguson AR, Edgerton VR, Beattie MS, Bresnahan JC, Tuszynski MH. Nout YS, et al. Neurotherapeutics. 2012 Apr;9(2):380-92. doi: 10.1007/s13311-012-0114-0. Neurotherapeutics. 2012. PMID: 22427157 Free PMC article. Review.
Cited by
- Biodegradable metals for bone fracture repair in animal models: a systematic review.
Zhang J, Shang Z, Jiang Y, Zhang K, Li X, Ma M, Li Y, Ma B. Zhang J, et al. Regen Biomater. 2020 Dec 3;8(1):rbaa047. doi: 10.1093/rb/rbaa047. eCollection 2021 Feb 1. Regen Biomater. 2020. PMID: 33732493 Free PMC article. Review. - Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques.
Nakagawa H, Ninomiya T, Yamashita T, Takada M. Nakagawa H, et al. Sci Rep. 2015 Jul 1;5:11986. doi: 10.1038/srep11986. Sci Rep. 2015. PMID: 26132896 Free PMC article. - When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury.
Flores Á, López-Santos D, García-Alías G. Flores Á, et al. Front Rehabil Sci. 2021 Dec 7;2:755963. doi: 10.3389/fresc.2021.755963. eCollection 2021. Front Rehabil Sci. 2021. PMID: 36188826 Free PMC article. Review. - Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation.
García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. García-Alías G, et al. Nat Neurosci. 2009 Sep;12(9):1145-51. doi: 10.1038/nn.2377. Epub 2009 Aug 9. Nat Neurosci. 2009. PMID: 19668200 - Long-term gliosis and molecular changes in the cervical spinal cord of the rhesus monkey after traumatic brain injury.
Nagamoto-Combs K, Morecraft RJ, Darling WG, Combs CK. Nagamoto-Combs K, et al. J Neurotrauma. 2010 Mar;27(3):565-85. doi: 10.1089/neu.2009.0966. J Neurotrauma. 2010. PMID: 20030560 Free PMC article.
References
- Anderson KD. J Neurotrauma. 2004;21:1371–1383. - PubMed
- Ackery A, Tator C, Krassioukov A. J Neurotrauma. 2004;21:1355–1370. - PubMed
- Fawcett J. Spinal Cord. 2002;40:615–623. - PubMed
- Schwab ME. Curr Opin Neurobiol. 2004;14:118–124. - PubMed
- Silver J, Miller JH. Nat Rev Neurosci. 2004;5:146–156. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical