Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube - PubMed (original) (raw)
Comparative Study
doi: 10.1115/1.2721076.
Affiliations
- PMID: 17536912
- DOI: 10.1115/1.2721076
Comparative Study
Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube
Larry A Taber et al. J Biomech Eng. 2007 Jun.
Abstract
Early in development, the heart is a single muscle-wrapped tube without formed valves. Yet survival of the embryo depends on the ability of this tube to pump blood at steadily increasing rates and pressures. Developmental biologists historically have speculated that the heart tube pumps via a peristaltic mechanism, with a wave of contraction propagating from the inflow to the outflow end. Physiological measurements, however, have shown that the flow becomes pulsatile in character quite early in development, before the valves form. Here, we use a computational model for flow though the embryonic heart to explore the pumping mechanism. Results from the model show that endocardial cushions, which are valve primordia arising near the ends of the tube, induce a transition from peristaltic to pulsatile flow. Comparison of numerical results with published experimental data shows reasonably good agreement for various pressure and flow parameters. This study illustrates the interrelationship between form and function in the early embryonic heart.
Similar articles
- The embryonic vertebrate heart tube is a dynamic suction pump.
Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M. Forouhar AS, et al. Science. 2006 May 5;312(5774):751-3. doi: 10.1126/science.1123775. Science. 2006. PMID: 16675702 - Flow within models of the vertebrate embryonic heart.
Santhanakrishnan A, Nguyen N, Cox JG, Miller LA. Santhanakrishnan A, et al. J Theor Biol. 2009 Aug 7;259(3):449-61. doi: 10.1016/j.jtbi.2009.04.020. Epub 2009 May 3. J Theor Biol. 2009. PMID: 19410580 - Computational models of heart pumping efficiencies based on contraction waves in spiral elastic bands.
Grosberg A, Gharib M. Grosberg A, et al. J Theor Biol. 2009 Apr 7;257(3):359-70. doi: 10.1016/j.jtbi.2008.11.022. Epub 2008 Dec 6. J Theor Biol. 2009. PMID: 19109980 - Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation.
Wagner M, Siddiqui MA. Wagner M, et al. Exp Biol Med (Maywood). 2007 Jul;232(7):866-80. Exp Biol Med (Maywood). 2007. PMID: 17609502 Review.
Cited by
- Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves.
Buskohl PR, Jenkins JT, Butcher JT. Buskohl PR, et al. Biomech Model Mechanobiol. 2012 Nov;11(8):1205-17. doi: 10.1007/s10237-012-0424-5. Epub 2012 Aug 7. Biomech Model Mechanobiol. 2012. PMID: 22869343 Free PMC article. - Mechanical regulation of cardiac development.
Lindsey SE, Butcher JT, Yalcin HC. Lindsey SE, et al. Front Physiol. 2014 Aug 21;5:318. doi: 10.3389/fphys.2014.00318. eCollection 2014. Front Physiol. 2014. PMID: 25191277 Free PMC article. Review. - Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry.
Davis A, Izatt J, Rothenberg F. Davis A, et al. Anat Rec (Hoboken). 2009 Mar;292(3):311-9. doi: 10.1002/ar.20808. Anat Rec (Hoboken). 2009. PMID: 19248163 Free PMC article. - Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts.
Liu A, Nickerson A, Troyer A, Yin X, Cary R, Thornburg K, Wang R, Rugonyi S. Liu A, et al. Comput Struct. 2011 Jun 1;89(11-12):855-867. doi: 10.1016/j.compstruc.2011.03.003. Comput Struct. 2011. PMID: 21572557 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources