Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity - PubMed (original) (raw)
Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity
Thomas D Mrsic-Flogel et al. Neuron. 2007.
Free article
Abstract
Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.
Similar articles
- Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M. Restani L, et al. Neuron. 2009 Dec 10;64(5):707-18. doi: 10.1016/j.neuron.2009.10.019. Neuron. 2009. PMID: 20005826 - Stimulus for rapid ocular dominance plasticity in visual cortex.
Rittenhouse CD, Siegler BA, Voelker CC, Shouval HZ, Paradiso MA, Bear MF. Rittenhouse CD, et al. J Neurophysiol. 2006 May;95(5):2947-50. doi: 10.1152/jn.01328.2005. Epub 2006 Feb 15. J Neurophysiol. 2006. PMID: 16481452 - Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
Lickey ME, Pham TA, Gordon B. Lickey ME, et al. Vision Res. 2004 Dec;44(28):3381-7. doi: 10.1016/j.visres.2004.09.018. Vision Res. 2004. PMID: 15536006 - Lifelong learning: ocular dominance plasticity in mouse visual cortex.
Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Hofer SB, et al. Curr Opin Neurobiol. 2006 Aug;16(4):451-9. doi: 10.1016/j.conb.2006.06.007. Epub 2006 Jul 11. Curr Opin Neurobiol. 2006. PMID: 16837188 Review. - Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing.
Tsanov M, Manahan-Vaughan D. Tsanov M, et al. Neuroscientist. 2008 Dec;14(6):584-97. doi: 10.1177/1073858408315655. Epub 2008 Jul 8. Neuroscientist. 2008. PMID: 18612086 Review.
Cited by
- Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo.
Yu H, Majewska AK, Sur M. Yu H, et al. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21235-40. doi: 10.1073/pnas.1108270109. Epub 2011 Dec 12. Proc Natl Acad Sci U S A. 2011. PMID: 22160713 Free PMC article. - Constitutively active H-ras accelerates multiple forms of plasticity in developing visual cortex.
Kaneko M, Cheetham CE, Lee YS, Silva AJ, Stryker MP, Fox K. Kaneko M, et al. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19026-31. doi: 10.1073/pnas.1013866107. Epub 2010 Oct 11. Proc Natl Acad Sci U S A. 2010. PMID: 20937865 Free PMC article. - Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons.
Park J, Papoutsi A, Ash RT, Marin MA, Poirazi P, Smirnakis SM. Park J, et al. Nat Commun. 2019 Nov 26;10(1):5372. doi: 10.1038/s41467-019-13029-0. Nat Commun. 2019. PMID: 31772192 Free PMC article. - Firing rate homeostasis in visual cortex of freely behaving rodents.
Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. Hengen KB, et al. Neuron. 2013 Oct 16;80(2):335-42. doi: 10.1016/j.neuron.2013.08.038. Neuron. 2013. PMID: 24139038 Free PMC article. - A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity.
Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, Miller KD. Toyoizumi T, et al. Neuron. 2013 Oct 2;80(1):51-63. doi: 10.1016/j.neuron.2013.07.022. Epub 2013 Oct 2. Neuron. 2013. PMID: 24094102 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical