Association of a high-molecular weight arginine-binding protein of Fusobacterium nucleatum ATCC 10953 with adhesion to secretory immunoglobulin A and coaggregation with Streptococcus cristatus - PubMed (original) (raw)

Association of a high-molecular weight arginine-binding protein of Fusobacterium nucleatum ATCC 10953 with adhesion to secretory immunoglobulin A and coaggregation with Streptococcus cristatus

A M Edwards et al. Oral Microbiol Immunol. 2007 Aug.

Abstract

Introduction: Fusobacterium nucleatum coaggregates with a diverse range of bacterial species, and binds to host tissues and proteins such as immunoglobulin. These interactions may support the attachment of a variety of organisms to oral surfaces and can facilitate the invasion of soft tissues. We hypothesized that coaggregation with streptococci and immunoglobulin binding may occur by a common adhesin sensitive to l-arginine.

Methods: Repeated mixing of F. nucleatum with non-immune secretory immunoglobulin A (S-IgA) and recovery of non-agglutinating cells isolated a spontaneous mutant (isolate 21) of F. nucleatum that was defective in S-IgA binding. Wild-type and mutant F. nucleatum were compared by coaggregation and adhesion assays.

Results: Isolate 21 exhibited significantly reduced S-IgA binding and coaggregation with oral streptococci but not with Porphyromonas gingivalis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the mutant was deficient compared to wild-type for a single protein of approximately 360 kilodaltons. The corresponding protein was isolated from wild-type F. nucleatum protein preparations by coprecipitation with arginine-agarose beads. This protein was able to bind both Streptococcus cristatus and S-IgA. Mass spectrometry analysis indicated that this protein was closely related to putative autotransporter proteins in other F. nucleatum strains and was a 100% match to the deduced amino acid sequence of a 10,638-base-pair open reading frame in the incomplete genome sequence of F. nucleatum ATCC 10,953. Peptides identified by MS-MS analysis spanned most of the predicted amino acid sequence, suggesting that the mature protein is not subject to postsecretory cleavage.

Conclusion: Coaggregation represents a novel function within the autotransporter class of proteins, which are often associated with virulence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources