A structure-function analysis of ion transport in crustacean gills and excretory organs - PubMed (original) (raw)
Review
. 2008 Nov;151(3):272-304.
doi: 10.1016/j.cbpa.2007.05.008. Epub 2007 May 18.
Affiliations
- PMID: 17604200
- DOI: 10.1016/j.cbpa.2007.05.008
Review
A structure-function analysis of ion transport in crustacean gills and excretory organs
Carolina A Freire et al. Comp Biochem Physiol A Mol Integr Physiol. 2008 Nov.
Abstract
Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.
Similar articles
- Exploring the versatility of the perfused crustacean gill as a model for transbranchial transport processes.
Allen GJP, Weihrauch D. Allen GJP, et al. Comp Biochem Physiol B Biochem Mol Biol. 2021 Jun-Jul;254:110572. doi: 10.1016/j.cbpb.2021.110572. Epub 2021 Feb 5. Comp Biochem Physiol B Biochem Mol Biol. 2021. PMID: 33556621 Review. - Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms.
Hwang PP, Lee TH, Lin LY. Hwang PP, et al. Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R28-47. doi: 10.1152/ajpregu.00047.2011. Epub 2011 Mar 30. Am J Physiol Regul Integr Comp Physiol. 2011. PMID: 21451143 Review. - Osmoregulation and excretion.
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Larsen EH, et al. Compr Physiol. 2014 Apr;4(2):405-573. doi: 10.1002/cphy.c130004. Compr Physiol. 2014. PMID: 24715560 Review. - Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics.
Havird JC, Mitchell RT, Henry RP, Santos SR. Havird JC, et al. Comp Biochem Physiol Part D Genomics Proteomics. 2016 Sep;19:34-44. doi: 10.1016/j.cbd.2016.06.002. Epub 2016 Jun 11. Comp Biochem Physiol Part D Genomics Proteomics. 2016. PMID: 27337176 Free PMC article. - Osmo-ionic regulation and carbonic anhydrase, Na+/K+-ATPase and V-H+-ATPase activities in gills of the ancient freshwater crustacean Aegla schmitti (Anomura) exposed to high salinities.
Bozza DC, Freire CA, Prodocimo V. Bozza DC, et al. Comp Biochem Physiol A Mol Integr Physiol. 2019 May;231:201-208. doi: 10.1016/j.cbpa.2019.02.024. Epub 2019 Feb 25. Comp Biochem Physiol A Mol Integr Physiol. 2019. PMID: 30818018
Cited by
- Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis.
Wanamaker SA, McElhany P, Maher M, Perez D, Busch DS, Nichols KM. Wanamaker SA, et al. Sci Rep. 2019 Jul 24;9(1):10717. doi: 10.1038/s41598-019-46947-6. Sci Rep. 2019. PMID: 31341175 Free PMC article. - Invasive investigation: uptake and transport of l-leucine in the gill epithelium of crustaceans.
Griffin RA, Boyd A, Weinrauch A, Blewett TA. Griffin RA, et al. Conserv Physiol. 2023 Apr 22;11(1):coad015. doi: 10.1093/conphys/coad015. eCollection 2023. Conserv Physiol. 2023. PMID: 37101703 Free PMC article. - Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation.
Sakamoto T, Ogawa S, Nishiyama Y, Akada C, Takahashi H, Watanabe T, Minakata H, Sakamoto H. Sakamoto T, et al. Sci Rep. 2015 Sep 25;5:14469. doi: 10.1038/srep14469. Sci Rep. 2015. PMID: 26403952 Free PMC article. - Polyamines regulate phosphorylation-dephosphorylation kinetics in a crustacean gill (Na+, K+)-ATPase.
Lucena MN, Garçon DP, Fontes CF, McNamara JC, Leone FA. Lucena MN, et al. Mol Cell Biochem. 2017 May;429(1-2):187-198. doi: 10.1007/s11010-017-2946-8. Epub 2017 Feb 11. Mol Cell Biochem. 2017. PMID: 28190171 - A Kinetic Characterization of the Gill (Na+, K+)-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura).
Farias DL, Lucena MN, Garçon DP, Mantelatto FL, McNamara JC, Leone FA. Farias DL, et al. J Membr Biol. 2017 Oct;250(5):517-534. doi: 10.1007/s00232-017-9978-6. Epub 2017 Aug 24. J Membr Biol. 2017. PMID: 28840273
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous