The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis - PubMed (original) (raw)
The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis
Melanie Königshoff et al. Am J Respir Cell Mol Biol. 2007 Dec.
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease unresponsive to currently available therapies. In IPF, initial alveolar epithelial cell damage leads to activation of fibroblast-(myo)fibroblasts, which deposit an increased amount of a collagen-rich extracellular matrix. Angiotensin II (ANGII) signaling, mediated via angiotensin II receptor type 1 (AGTR1) or type 2 (AGTR2), controls tissue remodeling in fibrosis, but the relevance of AGTR2 remains elusive. In the present study, we demonstrated increased expression of AGTR1 und AGTR2 in human and rodent lung tissues from patients with IPF and mice subjected to bleomycin-induced fibrosis, respectively. Both AGTR1 und AGTR2 localized to interstitial fibroblasts. Quantitative analysis of cell surface expression in primary mouse fibroblasts revealed a significant increase of AGTR2 surface expression in fibrotic fibroblasts, whereas AGTR1 surface expression levels remained similar. ANGII treatment of normal fibroblasts led to enhanced migration and proliferation, which was abrogated after pretreatment with losartan (LOS), an AGTR1 inhibitor. In contrast, in fibrotic fibroblasts, migration and proliferation was modified only by AGTR2, but not AGTR1 inhibition (using PD123319). ANGII-induced effects were mediated via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which was blocked via LOS and PD123319, respectively. Similar effects of AGTR1 and AGTR2 inhibition were observed using conditioned media of alveolar epithelial cells, a prominent source of ANGII in the lung in vivo. In summary, we conclude that ANGII signaling occurs primarily via AGTR1 in normal fibroblasts, while AGTR2-mediated effects are dominant on activated (myo)-fibroblasts, a receptor switch that may perturb epithelial-mesenchymal interaction, thereby further perpetuating fibrogenesis.
Similar articles
- Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development.
Tower CL, Lui S, Charlesworth NR, Smith SD, Aplin JD, Jones RL. Tower CL, et al. Reproduction. 2010 Dec;140(6):931-42. doi: 10.1530/REP-10-0307. Epub 2010 Sep 13. Reproduction. 2010. PMID: 20837730 - Angiotensin II signaling via type 2 receptors in a human model of vascular hyporeactivity: implications for hypertension.
Calò LA, Schiavo S, Davis PA, Pagnin E, Mormino P, D'Angelo A, Pessina AC. Calò LA, et al. J Hypertens. 2010 Jan;28(1):111-8. doi: 10.1097/HJH.0b013e328332b738. J Hypertens. 2010. PMID: 19797979 - Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts.
Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L. Gu J, et al. Exp Cell Res. 2012 Oct 1;318(16):2105-15. doi: 10.1016/j.yexcr.2012.06.015. Epub 2012 Jun 27. Exp Cell Res. 2012. PMID: 22749815 - Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages.
Uhal BD, Kim JK, Li X, Molina-Molina M. Uhal BD, et al. Curr Pharm Des. 2007;13(12):1247-56. doi: 10.2174/138161207780618885. Curr Pharm Des. 2007. PMID: 17504233 Review. - Angiotensin II type 2 receptor agonists: where should they be applied?
Verdonk K, Danser AH, van Esch JH. Verdonk K, et al. Expert Opin Investig Drugs. 2012 Apr;21(4):501-13. doi: 10.1517/13543784.2012.664131. Epub 2012 Feb 21. Expert Opin Investig Drugs. 2012. PMID: 22348403 Review.
Cited by
- The prognostic significance of insulin resistance in COVID-19: a review.
Mehraeen E, Abbaspour F, Banach M, SeyedAlinaghi S, Zarebidoki A, Tamehri Zadeh SS. Mehraeen E, et al. J Diabetes Metab Disord. 2024 Jan 20;23(1):305-322. doi: 10.1007/s40200-024-01385-8. eCollection 2024 Jun. J Diabetes Metab Disord. 2024. PMID: 38932824 Review. - YTHDC1 delays cellular senescence and pulmonary fibrosis by activating ATR in an m6A-independent manner.
Zhang C, Chen L, Xie C, Wang F, Wang J, Zhou H, Liu Q, Zeng Z, Li N, Huang J, Zhao Y, Liu H. Zhang C, et al. EMBO J. 2024 Jan;43(1):61-86. doi: 10.1038/s44318-023-00003-2. Epub 2023 Dec 15. EMBO J. 2024. PMID: 38177310 Free PMC article. - Myofibroblast-specific inhibition of the Rho kinase-MRTF-SRF pathway using nanotechnology for the prevention of pulmonary fibrosis.
Knipe RS, Nurunnabi M, Probst CK, Spinney JJ, Abe E, Bose RJC, Ha K, Logue A, Nguyen T, Servis R, Drummond M, Haring A, Brazee PL, Medoff BD, McCarthy JR. Knipe RS, et al. Am J Physiol Lung Cell Mol Physiol. 2023 Feb 1;324(2):L190-L198. doi: 10.1152/ajplung.00086.2022. Epub 2023 Jan 10. Am J Physiol Lung Cell Mol Physiol. 2023. PMID: 36625494 Free PMC article. - The Angiotensin AT2 Receptor: From a Binding Site to a Novel Therapeutic Target.
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. Steckelings UM, et al. Pharmacol Rev. 2022 Oct;74(4):1051-1135. doi: 10.1124/pharmrev.120.000281. Pharmacol Rev. 2022. PMID: 36180112 Free PMC article. Review. - Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals.
Al-Kuraishy HM, Batiha GE, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J. Al-Kuraishy HM, et al. Inflammopharmacology. 2022 Dec;30(6):2017-2026. doi: 10.1007/s10787-022-01027-6. Epub 2022 Aug 31. Inflammopharmacology. 2022. PMID: 36044102 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical