Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart - PubMed (original) (raw)
. 2007 Aug 14;116(7):706-13.
doi: 10.1161/CIRCULATIONAHA.107.703231. Epub 2007 Jul 23.
Iryna Shlapakova, Matthias J Szabolcs, Peter Danilo Jr, Beverly H Lorell, Irina A Potapova, Zhongju Lu, Amy B Rosen, Richard T Mathias, Peter R Brink, Richard B Robinson, Ira S Cohen, Michael R Rosen
Affiliations
- PMID: 17646577
- DOI: 10.1161/CIRCULATIONAHA.107.703231
Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart
Alexei N Plotnikov et al. Circulation. 2007.
Abstract
Background: Biological pacemaking has been performed with viral vectors, human embryonic stem cells, and adult human mesenchymal stem cells (hMSCs) as delivery systems. Only with human embryonic stem cells are data available regarding stability for >2 to 3 weeks, and here, immunosuppression has been used to facilitate survival of xenografts. The purpose of the present study was to determine whether hMSCs provide stable impulse initiation over 6 weeks without the use of immunosuppression, the "dose" of hMSCs that ensures function over this period, and the catecholamine responsiveness of hMSC-packaged pacemakers.
Methods and results: A full-length mHCN2 cDNA subcloned in a pIRES2-EGFP vector was electroporated into hMSCs. Transfection efficiency was estimated by GFP expression. I(HCN2) was measured with patch clamp, and cells were administered into the left ventricular anterior wall of adult dogs in complete heart block and with backup electronic pacemakers. Studies encompassed 6 weeks. I(HCN2) for all cells was 32.1+/-1.3 pA/pF (mean+/-SE) at -150 mV. Pacemaker function in intact dogs required 10 to 12 days to fully stabilize and persisted consistently through day 42 in dogs receiving > or =700,000 hMSCs (approximately 40% of which carried current). Rhythms were catecholamine responsive. Tissues from animals killed at 42 days manifested neither apoptosis nor humoral or cellular rejection.
Conclusions: hMSCs provide a means for administering catecholamine-responsive biological pacemakers that function stably for 6 weeks and manifest no cellular or humoral rejection at that time. Cell doses >700,000 are sufficient for pacemaking when administered to left ventricular myocardium.
Similar articles
- Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers.
Bruzauskaite I, Bironaite D, Bagdonas E, Skeberdis VA, Denkovskij J, Tamulevicius T, Uvarovas V, Bernotiene E. Bruzauskaite I, et al. Stem Cell Res Ther. 2016 Apr 30;7(1):67. doi: 10.1186/s13287-016-0326-z. Stem Cell Res Ther. 2016. PMID: 27137910 Free PMC article. - Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers.
Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS. Potapova I, et al. Circ Res. 2004 Apr 16;94(7):952-9. doi: 10.1161/01.RES.0000123827.60210.72. Epub 2004 Feb 26. Circ Res. 2004. PMID: 14988226 - mHCN4 genetically modified canine mesenchymal stem cells provide biological pacemaking function in complete dogs with atrioventricular block.
Lu W, Yaoming N, Boli R, Jun C, Changhai Z, Yang Z, Zhiyuan S. Lu W, et al. Pacing Clin Electrophysiol. 2013 Sep;36(9):1138-49. doi: 10.1111/pace.12154. Epub 2013 May 10. Pacing Clin Electrophysiol. 2013. PMID: 23663261 - Biological pacemakers based on I(f).
Rosen MR, Brink PR, Cohen IS, Robinson RB. Rosen MR, et al. Med Biol Eng Comput. 2007 Feb;45(2):157-66. doi: 10.1007/s11517-006-0060-2. Epub 2006 May 31. Med Biol Eng Comput. 2007. PMID: 17629762 Review. - Funny channels in the control of cardiac rhythm and mode of action of selective blockers.
DiFrancesco D. DiFrancesco D. Pharmacol Res. 2006 May;53(5):399-406. doi: 10.1016/j.phrs.2006.03.006. Epub 2006 Mar 27. Pharmacol Res. 2006. PMID: 16638640 Review.
Cited by
- Early afterdepolarizations and cardiac arrhythmias.
Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z. Weiss JN, et al. Heart Rhythm. 2010 Dec;7(12):1891-9. doi: 10.1016/j.hrthm.2010.09.017. Epub 2010 Sep 22. Heart Rhythm. 2010. PMID: 20868774 Free PMC article. - Gene therapy strategies for cardiac electrical dysfunction.
Greener I, Donahue JK. Greener I, et al. J Mol Cell Cardiol. 2011 May;50(5):759-65. doi: 10.1016/j.yjmcc.2010.07.022. Epub 2010 Aug 7. J Mol Cell Cardiol. 2011. PMID: 20696170 Free PMC article. Review. - GENE AND CELL THERAPY FOR LIFE-THREATENING CARDIAC ARRHYTHMIAS.
Rosen MR, Danilo P, Robinson RB. Rosen MR, et al. Dialog Cardiovasc Med. 2009 Jan 1;14(1):44-51. Dialog Cardiovasc Med. 2009. PMID: 20191107 Free PMC article. - Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model.
Pratheesh MD, Gade NE, Nath A, Dubey PK, Sivanarayanan TB, Madhu DN, Sreekumar TR, Amarpal, Saikumar G, Sharma GT. Pratheesh MD, et al. Cytotechnology. 2017 Dec;69(6):841-849. doi: 10.1007/s10616-017-0097-0. Epub 2017 May 11. Cytotechnology. 2017. PMID: 28497366 Free PMC article. - Reprogramming the conduction system: Onward toward a biological pacemaker.
Meyers JD, Jay PY, Rentschler S. Meyers JD, et al. Trends Cardiovasc Med. 2016 Jan;26(1):14-20. doi: 10.1016/j.tcm.2015.03.015. Epub 2015 Apr 1. Trends Cardiovasc Med. 2016. PMID: 25937044 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources