CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector - PubMed (original) (raw)
. 2008 Feb;214(2):442-55.
doi: 10.1002/jcp.21220.
Péter Hegyi, Mamoru Hasegawa, Makoto Inoue, Jun You, Akihiro Iida, Imre Ignáth, Eric W F W Alton, Uta Griesenbach, Gabriella Ovári, János Vág, Ana C Da Paula, Russell M Crawford, Gábor Varga, Margarida D Amaral, Anil Mehta, János Lonovics, Barry E Argent, Michael A Gray
Affiliations
- PMID: 17654517
- DOI: 10.1002/jcp.21220
CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector
Zoltán Rakonczay Jr et al. J Cell Physiol. 2008 Feb.
Abstract
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.
(c) 2007 Wiley-Liss, Inc.
Similar articles
- CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells.
Ignáth I, Hegyi P, Venglovecz V, Székely CA, Carr G, Hasegawa M, Inoue M, Takács T, Argent BE, Gray MA, Rakonczay Z Jr. Ignáth I, et al. Pancreas. 2009 Nov;38(8):921-9. doi: 10.1097/MPA.0b013e3181b65d34. Pancreas. 2009. PMID: 19752774 - Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
Reddy MM, Quinton PM. Reddy MM, et al. JOP. 2001 Jul;2(4 Suppl):212-8. JOP. 2001. PMID: 11875262 Review. - Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein.
Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M. Ban H, et al. Gene Ther. 2007 Dec;14(24):1688-94. doi: 10.1038/sj.gt.3303032. Epub 2007 Sep 27. Gene Ther. 2007. PMID: 17898794 - Sendai virus-mediated CFTR gene transfer to the airway epithelium.
Ferrari S, Griesenbach U, Iida A, Farley R, Wright AM, Zhu J, Munkonge FM, Smith SN, You J, Ban H, Inoue M, Chan M, Singh C, Verdon B, Argent BE, Wainwright B, Jeffery PK, Geddes DM, Porteous DJ, Hyde SC, Gray MA, Hasegawa M, Alton EW. Ferrari S, et al. Gene Ther. 2007 Oct;14(19):1371-9. doi: 10.1038/sj.gt.3302991. Epub 2007 Jun 28. Gene Ther. 2007. PMID: 17597790 - Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
Stanton BA. Stanton BA. Wien Klin Wochenschr. 1997 Jun 27;109(12-13):457-64. Wien Klin Wochenschr. 1997. PMID: 9261986 Review.
Cited by
- SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization.
Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL. Stewart AK, et al. Am J Physiol Cell Physiol. 2011 Aug;301(2):C289-303. doi: 10.1152/ajpcell.00089.2011. Epub 2011 May 18. Am J Physiol Cell Physiol. 2011. PMID: 21593449 Free PMC article. - SLC26A9 in airways and intestine: secretion or absorption?
Kunzelmann K, Centeio R, Ousingsawat J, Talbi K, Seidler U, Schreiber R. Kunzelmann K, et al. Channels (Austin). 2023 Dec;17(1):2186434. doi: 10.1080/19336950.2023.2186434. Channels (Austin). 2023. PMID: 36866602 Free PMC article. Review. - Functional analysis of nonsynonymous single nucleotide polymorphisms in human SLC26A9.
Chen AP, Chang MH, Romero MF. Chen AP, et al. Hum Mutat. 2012 Aug;33(8):1275-84. doi: 10.1002/humu.22107. Epub 2012 Jun 7. Hum Mutat. 2012. PMID: 22544634 Free PMC article. - Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins.
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Kunzelmann K, et al. Int J Mol Sci. 2023 Aug 26;24(17):13278. doi: 10.3390/ijms241713278. Int J Mol Sci. 2023. PMID: 37686084 Free PMC article. Review. - Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production.
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Racz R, et al. Curr Pharm Des. 2018;24(18):2012-2022. doi: 10.2174/1381612824666180515125654. Curr Pharm Des. 2018. PMID: 29769002 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical