Optimal transportation network with concave cost functions: loop analysis and algorithms - PubMed (original) (raw)
. 2007 Jun;75(6 Pt 2):066112.
doi: 10.1103/PhysRevE.75.066112. Epub 2007 Jun 27.
Affiliations
- PMID: 17677330
- DOI: 10.1103/PhysRevE.75.066112
Optimal transportation network with concave cost functions: loop analysis and algorithms
Zhen Shao et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun.
Abstract
Transportation networks play a vital role in modern societies. Structural optimization of a transportation system under a given set of constraints is an issue of great practical importance. For a general transportation system whose total cost C is determined by C = Sigma(i<j)C(ij)(I(ij)), with C(ij) (I(ij)) being the cost of the flow I(ij) between node i and node j, Banavar and co-workers [Phys. Rev. Lett. 84, 4745 (2000)] proved that the optimal network topology is a tree if C(ij) proportional |I(ij)|(gamma) with 0 < gamma < 1. The same conclusion also holds in the more general case where all the flow costs are strictly concave functions of the flow I(ij). To further understand the qualitative difference between systems with concave and convex cost functions, a loop analysis of transportation cost is performed in the present paper, and an alternative mathematical proof of the optimality of tree-formed networks is given. The simple intuitive picture of this proof then leads to an efficient global algorithm for the searching of optimal structures for a given transportation system with concave cost functions.
Similar articles
- Correlations between communicability sequence entropy and transport performance in spatially embedded networks.
Chen D, Niu RW, Pan GJ. Chen D, et al. Phys Rev E. 2019 Jun;99(6-1):062310. doi: 10.1103/PhysRevE.99.062310. Phys Rev E. 2019. PMID: 31330619 - Direct calculation of a tree length using a distance matrix.
Pauplin Y. Pauplin Y. J Mol Evol. 2000 Jul;51(1):41-7. doi: 10.1007/s002390010065. J Mol Evol. 2000. PMID: 10903371 - Structure, scaling, and phase transition in the optimal transport network.
Bohn S, Magnasco MO. Bohn S, et al. Phys Rev Lett. 2007 Feb 23;98(8):088702. doi: 10.1103/PhysRevLett.98.088702. Epub 2007 Feb 21. Phys Rev Lett. 2007. PMID: 17359138 - Optimal transport in time-varying small-world networks.
Chen Q, Qian JH, Zhu L, Han DD. Chen Q, et al. Phys Rev E. 2016 Mar;93(3):032321. doi: 10.1103/PhysRevE.93.032321. Epub 2016 Mar 25. Phys Rev E. 2016. PMID: 27078380 - Towards design principles for optimal transport networks.
Li G, Reis SD, Moreira AA, Havlin S, Stanley HE, Andrade JS Jr. Li G, et al. Phys Rev Lett. 2010 Jan 8;104(1):018701. doi: 10.1103/PhysRevLett.104.018701. Epub 2010 Jan 6. Phys Rev Lett. 2010. PMID: 20366398
Cited by
- From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung CH, Saad D, Wong KY. Yeung CH, et al. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13717-22. doi: 10.1073/pnas.1301111110. Epub 2013 Jul 29. Proc Natl Acad Sci U S A. 2013. PMID: 23898198 Free PMC article.