Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus - PubMed (original) (raw)
Comparative Study
. 2007 Nov 1;402(1-2):51-6.
doi: 10.1016/j.gene.2007.07.019. Epub 2007 Aug 1.
Affiliations
- PMID: 17728076
- DOI: 10.1016/j.gene.2007.07.019
Comparative Study
Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus
Minoru Ueda et al. Gene. 2007.
Abstract
Gene transfer events from organelle genomes (mitochondria and chloroplasts in plants) to the nuclear genome are important processes in the evolution of the eukaryotic cell. It is highly likely that the gene transfer event is still an ongoing process in higher plant mitochondria and chloroplasts. The number and order of genes encoded in the chloroplast genome of higher plants are highly conserved. Recently, several exceptional cases of gene loss from the chloroplast genome have been discovered as the number of complete chloroplast genome sequences has increased. The Populus chloroplast genome has lost the rpl32 gene, while the corresponding the chloroplast rpl32 (cp rpl32) gene has been identified in the nuclear genome. Nuclear genes transferred from the chloroplast genome need to gain a sequence that encodes a transit peptide. Here, we revealed that the nuclear cp rpl32 gene has acquired the exon sequence, which is highly homologous to a transit peptide derived from the chloroplast Cu-Zn superoxide dismutase (cp sod-1) gene. The cp rpl32 gene has acquired the sequence that encodes not only for the transit peptide, but also for the conserved N-terminal portion of the mature SOD protein from the cp sod-1 gene, suggesting the occurrence of DNA sequence duplication. Unlike cp SOD-1, cp RPL32 did not show biased localization in the chloroplasts. This difference may be caused by mutations accumulated in the sequence of the SOD domain on the cp rpl32 gene. We provide new insight into the fate of the inherent sequence derived from a transit peptide.
Similar articles
- Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal.
Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K. Ueda M, et al. Mol Biol Evol. 2008 Aug;25(8):1566-75. doi: 10.1093/molbev/msn102. Epub 2008 May 2. Mol Biol Evol. 2008. PMID: 18453549 - Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae.
Park S, Jansen RK, Park S. Park S, et al. BMC Plant Biol. 2015 Feb 5;15:40. doi: 10.1186/s12870-015-0432-6. BMC Plant Biol. 2015. PMID: 25652741 Free PMC article. - Evidence for transit peptide acquisition through duplication and subsequent frameshift mutation of a preexisting protein gene in rice.
Ueda M, Fujimoto M, Arimura S, Tsutsumi N, Kadowaki K. Ueda M, et al. Mol Biol Evol. 2006 Dec;23(12):2405-12. doi: 10.1093/molbev/msl112. Epub 2006 Sep 13. Mol Biol Evol. 2006. PMID: 16971692 - Gene duplication, transfer, and evolution in the chloroplast genome.
Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Xue Y, Jin XF, Tian YS, Zhao W, Yao QH. Xiong AS, et al. Biotechnol Adv. 2009 Jul-Aug;27(4):340-7. doi: 10.1016/j.biotechadv.2009.01.012. Biotechnol Adv. 2009. PMID: 19472510 Review. - When gene marriages don't work out: divorce by subfunctionalization.
Cusack BP, Wolfe KH. Cusack BP, et al. Trends Genet. 2007 Jun;23(6):270-2. doi: 10.1016/j.tig.2007.03.010. Epub 2007 Apr 5. Trends Genet. 2007. PMID: 17418444 Review.
Cited by
- Complete chloroplast genome sequence and phylogenetic analysis of Spathiphyllum 'Parrish'.
Liu XF, Zhu GF, Li DM, Wang XJ. Liu XF, et al. PLoS One. 2019 Oct 23;14(10):e0224038. doi: 10.1371/journal.pone.0224038. eCollection 2019. PLoS One. 2019. PMID: 31644545 Free PMC article. - Plastid Genome Assembly Using Long-read data.
Zhou W, Armijos CE, Lee C, Lu R, Wang J, Ruhlman TA, Jansen RK, Jones AM, Jones CD. Zhou W, et al. Mol Ecol Resour. 2023 Aug;23(6):1442-1457. doi: 10.1111/1755-0998.13787. Epub 2023 Apr 2. Mol Ecol Resour. 2023. PMID: 36939021 Free PMC article. - Chloroplast genomes of Simarouba Aubl., molecular evolution and comparative analyses within Sapindales.
Almeida-Silva MA, Braga-Ferreira RS, Targueta CP, Corvalán LCJ, Silva-Neto CM, Franceschinelli EV, Sobreiro MB, Nunes R, Telles MPC. Almeida-Silva MA, et al. Sci Rep. 2024 Sep 12;14(1):21358. doi: 10.1038/s41598-024-71956-5. Sci Rep. 2024. PMID: 39266625 Free PMC article. - Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.
Huang Y, Wang J, Yang Y, Fan C, Chen J. Huang Y, et al. Front Plant Sci. 2017 Jun 20;8:1050. doi: 10.3389/fpls.2017.01050. eCollection 2017. Front Plant Sci. 2017. PMID: 28676809 Free PMC article. - Sequencing and comparative analysis of the chloroplast genome of Ribes odoratum provide insights for marker development and phylogenetics in Ribes.
Wang L, Liang J, Sa W, Wang L. Wang L, et al. Physiol Mol Biol Plants. 2021 Jan;27(1):81-92. doi: 10.1007/s12298-021-00932-4. Epub 2021 Feb 1. Physiol Mol Biol Plants. 2021. PMID: 33627964 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous