TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study - PubMed (original) (raw)
Multicenter Study
. 2007 Sep 20;357(12):1199-209.
doi: 10.1056/NEJMoa073491. Epub 2007 Sep 5.
Mark Seielstad, Leonid Padyukov, Annette T Lee, Elaine F Remmers, Bo Ding, Anthony Liew, Houman Khalili, Alamelu Chandrasekaran, Leela R L Davies, Wentian Li, Adrian K S Tan, Carine Bonnard, Rick T H Ong, Anbupalam Thalamuthu, Sven Pettersson, Chunyu Liu, Chao Tian, Wei V Chen, John P Carulli, Evan M Beckman, David Altshuler, Lars Alfredsson, Lindsey A Criswell, Christopher I Amos, Michael F Seldin, Daniel L Kastner, Lars Klareskog, Peter K Gregersen
Affiliations
- PMID: 17804836
- PMCID: PMC2636867
- DOI: 10.1056/NEJMoa073491
Multicenter Study
TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study
Robert M Plenge et al. N Engl J Med. 2007.
Abstract
Background: Rheumatoid arthritis has a complex mode of inheritance. Although HLA-DRB1 and PTPN22 are well-established susceptibility loci, other genes that confer a modest level of risk have been identified recently. We carried out a genomewide association analysis to identify additional genetic loci associated with an increased risk of rheumatoid arthritis.
Methods: We genotyped 317,503 single-nucleotide polymorphisms (SNPs) in a combined case-control study of 1522 case subjects with rheumatoid arthritis and 1850 matched control subjects. The patients were seropositive for autoantibodies against cyclic citrullinated peptide (CCP). We obtained samples from two data sets, the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA). Results from NARAC and EIRA for 297,086 SNPs that passed quality-control filters were combined with the use of Cochran-Mantel-Haenszel stratified analysis. SNPs showing a significant association with disease (P<1x10(-8)) were genotyped in an independent set of case subjects with anti-CCP-positive rheumatoid arthritis (485 from NARAC and 512 from EIRA) and in control subjects (1282 from NARAC and 495 from EIRA).
Results: We observed associations between disease and variants in the major-histocompatibility-complex locus, in PTPN22, and in a SNP (rs3761847) on chromosome 9 for all samples tested, the latter with an odds ratio of 1.32 (95% confidence interval, 1.23 to 1.42; P=4x10(-14)). The SNP is in linkage disequilibrium with two genes relevant to chronic inflammation: TRAF1 (encoding tumor necrosis factor receptor-associated factor 1) and C5 (encoding complement component 5).
Conclusions: A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis.
Copyright 2007 Massachusetts Medical Society.
Figures
Figure 1. Results of the Genomewide Association Study
Panels A and B show results for 297,086 polymorphic SNPs genotyped in samples from 1522 case subjects with rheumatoid arthritis who were seropositive for autoantibodies against cyclic citrullinated peptide (anti-CCP-positive) and 1850 control subjects from the combined data sets from the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA). Panel A shows a comparison of distributions of observed versus expected P values generated by Cochran-Mantel-Haenszel stratified analysis and corrected for residual inflation by genomic control. Black data points represent the inclusion of SNPs from the major-histocompatibility-complex (MHC) locus; blue data points represent the exclusion of MHC. The most significant non-MHC SNPs are at PTPN22 and the TRAF1-C5 locus. Panel B shows SNPs plotted according to chromosomal location, with the -log10 P values corrected with the use of genomic control. The blue horizontal line indicates SNPs that are significant at a genomewide level (P = 5×10-8). SNPs at PTPN22 and within the MHC locus, where the HLA-DRB1 gene resides, reach genomewide significance. Multiple SNPs across the TRAF1-C5 locus on chromosome 9 (e.g., rs3761847; P = 2×10-8 have a significant association.
Figure 2. (facing page) Case-Control Association Results and Linkage Disequilibrium Structure in the> TRAF1-C5 Locus
Panel A shows results for SNPs genotyped across 1 Mb as part of the original genomewide association scan in samples from 1522 case subjects with anti-CCP-positive rheumatoid arthritis and 1850 control subjects. Each diamond indicates a genotyped SNP; the color of each diamond is based on the correlation coefficient (r2) with the CEU HapMap with the most significant SNP in our study (rs3761847). The blue diamond indicates the P value for all samples in our study (the original scan plus replication samples), as determined by the Cochran-Mantel-Haenszel method in both NARAC and EIRA samples. The recombination rate (in centimorgans per megabase) with the CEU HapMap is shown in light blue along the x axis; the red arrow indicates the block of linkage disequilibrium shown in Panel B. The blue arrows indicate gene location. Panel B shows the linkage-disequilibrium (LD) structure across 200 kb of the TRAF1-C5 locus, based on pairwise r2 with the CEU HapMap. The intron-exon structure of each gene is at the top of the figure. Putative functional SNPs in linkage disequilibrium with either rs3761847 or rs2900180 are indicated by hatched bars, in which red indicates r2>0.80 and pink indicates r2 = 0.20 to 0.80; the specific SNPs, frequency, pairwise r2 with the CEU HapMap, and the putative annotated function are listed at the bottom of the figure. CpG denotes cytidine and guanosine joined by a phosphodiester bond.
Comment in
- Lessons from a genomewide association study of rheumatoid arthritis.
Yamamoto K, Yamada R. Yamamoto K, et al. N Engl J Med. 2007 Sep 20;357(12):1250-1. doi: 10.1056/NEJMe078174. Epub 2007 Sep 5. N Engl J Med. 2007. PMID: 17804837 No abstract available.
Similar articles
- Single nucleotide polymorphisms at the TRAF1/C5 locus are associated with rheumatoid arthritis in a Han Chinese population.
Zhu J, Zhang D, Wu F, He F, Liu X, Wu L, Zhou B, Liu J, Lu F, Liu J, Luo R, Long W, Yang M, Ma S, Wu X, Shi Y, Wu T, Lin Y, Yang J, Yuan G, Yang Z. Zhu J, et al. BMC Med Genet. 2011 Apr 14;12:53. doi: 10.1186/1471-2350-12-53. BMC Med Genet. 2011. PMID: 21492465 Free PMC article. - Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis.
Kallberg H, Padyukov L, Plenge RM, Ronnelid J, Gregersen PK, van der Helm-van Mil AH, Toes RE, Huizinga TW, Klareskog L, Alfredsson L; Epidemiological Investigation of Rheumatoid Arthritis study group. Kallberg H, et al. Am J Hum Genet. 2007 May;80(5):867-75. doi: 10.1086/516736. Epub 2007 Apr 2. Am J Hum Genet. 2007. PMID: 17436241 Free PMC article. - Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region.
Ding B, Padyukov L, Lundström E, Seielstad M, Plenge RM, Oksenberg JR, Gregersen PK, Alfredsson L, Klareskog L. Ding B, et al. Arthritis Rheum. 2009 Jan;60(1):30-8. doi: 10.1002/art.24135. Arthritis Rheum. 2009. PMID: 19116921 Free PMC article. - Genetics of rheumatoid arthritis - a comprehensive review.
Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Kurkó J, et al. Clin Rev Allergy Immunol. 2013 Oct;45(2):170-9. doi: 10.1007/s12016-012-8346-7. Clin Rev Allergy Immunol. 2013. PMID: 23288628 Free PMC article. Review. - The immunopathogenesis of rheumatoid arthritis.
Imboden JB. Imboden JB. Annu Rev Pathol. 2009;4:417-34. doi: 10.1146/annurev.pathol.4.110807.092254. Annu Rev Pathol. 2009. PMID: 18954286 Review.
Cited by
- TRAF1 Deficiency in Macrophages Drives Exacerbated Joint Inflammation in Rheumatoid Arthritis.
Mirzaesmaeili A, Abdul-Sater AA. Mirzaesmaeili A, et al. Biomolecules. 2024 Jul 19;14(7):864. doi: 10.3390/biom14070864. Biomolecules. 2024. PMID: 39062579 Free PMC article. - TRAF1 gene polymorphism correlates with the titre of Gp210 antibody in patients with primary biliary cirrhosis.
Kempinska-Podhorodecka A, Shums Z, Wasilewicz M, Wunsch E, Milkiewicz M, Bogdanos DP, Norman GL, Milkiewicz P. Kempinska-Podhorodecka A, et al. Clin Dev Immunol. 2012;2012:487521. doi: 10.1155/2012/487521. Epub 2012 Oct 22. Clin Dev Immunol. 2012. PMID: 23125866 Free PMC article. - STAT4 Gene Variant rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico.
Bravo-Villagra KM, Muñoz-Valle JF, Baños-Hernández CJ, Cerpa-Cruz S, Navarro-Zarza JE, Parra-Rojas I, Aguilar-Velázquez JA, García-Arellano S, López-Quintero A. Bravo-Villagra KM, et al. Genes (Basel). 2024 Feb 14;15(2):241. doi: 10.3390/genes15020241. Genes (Basel). 2024. PMID: 38397230 Free PMC article. - Genetics and epigenetics of rheumatoid arthritis.
Viatte S, Plant D, Raychaudhuri S. Viatte S, et al. Nat Rev Rheumatol. 2013 Mar;9(3):141-53. doi: 10.1038/nrrheum.2012.237. Epub 2013 Feb 5. Nat Rev Rheumatol. 2013. PMID: 23381558 Free PMC article. Review. - Recent Advances in Defining the Genetic Basis of Rheumatoid Arthritis.
Terao C, Raychaudhuri S, Gregersen PK. Terao C, et al. Annu Rev Genomics Hum Genet. 2016 Aug 31;17:273-301. doi: 10.1146/annurev-genom-090314-045919. Epub 2016 May 23. Annu Rev Genomics Hum Genet. 2016. PMID: 27216775 Free PMC article. Review.
References
- Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61. - PubMed
- Seldin MF, Amos CI, Ward R, Gregersen PK. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum. 1999;42:1071–9. - PubMed
- Klareskog L, Stolt P, Lundberg K, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLADR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 2006;54:38–46. - PubMed
- MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43:30–7. - PubMed
- Bali D, Gourley S, Kostyu DD, et al. Genetic analysis of multiplex rheumatoid arthritis families. Genes Immun. 1999;1:28–36. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- K08-AI55314-3/AI/NIAID NIH HHS/United States
- N01AR22263/AR/NIAMS NIH HHS/United States
- M01 RR000079/RR/NCRR NIH HHS/United States
- R01-AI065841/AI/NIAID NIH HHS/United States
- R01 AR050267/AR/NIAMS NIH HHS/United States
- R01-AR44422/AR/NIAMS NIH HHS/United States
- K08 AI055314-03/AI/NIAID NIH HHS/United States
- M01 RR018535/RR/NCRR NIH HHS/United States
- R01 AR044422/AR/NIAMS NIH HHS/United States
- 5-M01-RR-00079/RR/NCRR NIH HHS/United States
- M01-RR018535/RR/NCRR NIH HHS/United States
- K08 AI055314-02/AI/NIAID NIH HHS/United States
- R01 AI065841/AI/NIAID NIH HHS/United States
- N01-AR22263/AR/NIAMS NIH HHS/United States
- Intramural NIH HHS/United States
- K08 AI055314-01A1/AI/NIAID NIH HHS/United States
- K08 AI055314-05/AI/NIAID NIH HHS/United States
- R01-AR050267/AR/NIAMS NIH HHS/United States
- K24 AR002175/AR/NIAMS NIH HHS/United States
- K08 AI055314/AI/NIAID NIH HHS/United States
- K24-AR02175/AR/NIAMS NIH HHS/United States
- K08 AI055314-04/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous