Monoamine transporters and psychostimulant addiction - PubMed (original) (raw)
Review
. 2008 Jan 1;75(1):196-217.
doi: 10.1016/j.bcp.2007.08.003. Epub 2007 Aug 7.
Affiliations
- PMID: 17825265
- DOI: 10.1016/j.bcp.2007.08.003
Review
Monoamine transporters and psychostimulant addiction
Leonard L Howell et al. Biochem Pharmacol. 2008.
Abstract
Psychostimulants are a broadly defined class of drugs that stimulate the central and peripheral nervous systems as their primary pharmacological effect. The abuse liability of psychostimulants is well established and represents a significant public health concern. An extensive literature documents the critical importance of monoamines (dopamine, serotonin and norepinephrine) in the behavioral pharmacology and addictive properties of psychostimulants. In particular, the dopamine transporter plays a primary role in the reinforcing and behavioral-stimulant effects of psychostimulants in animals and humans. Moreover, both serotonin and norepinephrine systems can reliably modulate the neurochemical and behavioral effects of psychostimulants. However, there is a growing body of evidence that highlights complex interactions among additional neurotransmitter systems. Cortical glutamatergic systems provide important regulation of dopamine function, and inhibitory amino acid gamma-aminobutyric acid (GABA) systems can modulate basal dopamine and glutamate release. Repeated exposure to psychostimulants can lead to robust and enduring changes in neurobiological substrates, including monoamines, and corresponding changes in sensitivity to acute drug effects on neurochemistry and behavior. Significant advances in the understanding of neurobiological mechanisms underlying psychostimulant abuse and dependence have guided pharmacological treatment strategies to improve clinical outcome. In particular, functional agonist treatments may be used effectively to stabilize monoamine neurochemistry, influence behavior and lead to long-term abstinence. However, additional clinical studies are required in order to identify safe and efficacious pharmacotherapies.
Similar articles
- Pharmacological determinants of the reinforcing effects of psychostimulants: relation to agonist substitution treatment.
Lile JA. Lile JA. Exp Clin Psychopharmacol. 2006 Feb;14(1):20-33. doi: 10.1037/1064-1297.14.1.20. Exp Clin Psychopharmacol. 2006. PMID: 16503702 Review. - Monoamine transporter as a target molecule for psychostimulants.
Sora I, Li B, Fumushima S, Fukui A, Arime Y, Kasahara Y, Tomita H, Ikeda K. Sora I, et al. Int Rev Neurobiol. 2009;85:29-33. doi: 10.1016/S0074-7742(09)85003-4. Int Rev Neurobiol. 2009. PMID: 19607959 Review. - Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems.
Miczek KA, Fish EW, De Bold JF, De Almeida RM. Miczek KA, et al. Psychopharmacology (Berl). 2002 Oct;163(3-4):434-58. doi: 10.1007/s00213-002-1139-6. Epub 2002 Aug 6. Psychopharmacology (Berl). 2002. PMID: 12373445 Review. - Psychostimulant drugs and a dopamine hypothesis regarding addiction: update on recent research.
Ritz MC, Kuhar MJ. Ritz MC, et al. Biochem Soc Symp. 1993;59:51-64. Biochem Soc Symp. 1993. PMID: 7910741 Review. - Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse.
Tassin JP. Tassin JP. Biochem Pharmacol. 2008 Jan 1;75(1):85-97. doi: 10.1016/j.bcp.2007.06.038. Epub 2007 Jun 30. Biochem Pharmacol. 2008. PMID: 17686465 Review.
Cited by
- Psychoactive "bath salts": not so soothing.
Baumann MH, Partilla JS, Lehner KR. Baumann MH, et al. Eur J Pharmacol. 2013 Jan 5;698(1-3):1-5. doi: 10.1016/j.ejphar.2012.11.020. Epub 2012 Nov 23. Eur J Pharmacol. 2013. PMID: 23178799 Free PMC article. Review. - Adenovirus capsid-based anti-cocaine vaccine prevents cocaine from binding to the nonhuman primate CNS dopamine transporter.
Maoz A, Hicks MJ, Vallabhjosula S, Synan M, Kothari PJ, Dyke JP, Ballon DJ, Kaminsky SM, De BP, Rosenberg JB, Martinez D, Koob GF, Janda KD, Crystal RG. Maoz A, et al. Neuropsychopharmacology. 2013 Oct;38(11):2170-8. doi: 10.1038/npp.2013.114. Epub 2013 May 10. Neuropsychopharmacology. 2013. PMID: 23660705 Free PMC article. - Early ontogeny of D-amphetamine-induced one-trial behavioral sensitization.
McDougall SA, Nuqui CM, Quiroz AT, Martinez CM. McDougall SA, et al. Pharmacol Biochem Behav. 2013 Mar;104:154-62. doi: 10.1016/j.pbb.2013.01.016. Epub 2013 Jan 27. Pharmacol Biochem Behav. 2013. PMID: 23360956 Free PMC article. - Neuropharmacology of Synthetic Cathinones.
Baumann MH, Walters HM, Niello M, Sitte HH. Baumann MH, et al. Handb Exp Pharmacol. 2018;252:113-142. doi: 10.1007/164_2018_178. Handb Exp Pharmacol. 2018. PMID: 30406443 Free PMC article. - Blunted Amphetamine-induced Reinforcing Behaviors and Transporter Downregulation in Knock-in Mice Carrying Alanine Mutations at Threonine-258 and Serine-259 of Norepinephrine Transporter.
Ragu Varman D, Mannangatti P, Subler MA, Windle JJ, Ramamoorthy S, Jayanthi LD. Ragu Varman D, et al. J Mol Neurosci. 2022 Sep;72(9):1965-1976. doi: 10.1007/s12031-022-01988-x. Epub 2022 Jul 19. J Mol Neurosci. 2022. PMID: 35852782
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical