Age-specific changes in sex steroid biosynthesis and sex development - PubMed (original) (raw)
Review
Age-specific changes in sex steroid biosynthesis and sex development
Nils Krone et al. Best Pract Res Clin Endocrinol Metab. 2007 Sep.
Abstract
Normal male sex development requires the SRY gene on the Y chromosome, the regression of Müllerian structures via anti-Müllerian hormone (AMH) signalling, the development of the Wolffian duct system into normal male internal genital structures consequent to testosterone secretion by the testicular Leydig cells, and finally, sufficient activation of testosterone to dihydrotestosterone by 5alpha-reductase. All these events take place during weeks 8-12 of gestation, a narrow window of sexual differentiation. Recent studies in human fetal development have demonstrated the early fetal expression of the adrenocorticotrophic hormone (ACTH) receptor and all steroidogenic components necessary for the biosynthesis of cortisol. These findings provide compelling evidence for the assumed pathogenesis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, diminished feedback to the pituitary due to glucocorticoid deficiency, subsequent ACTH excess, and up-regulation of adrenal androgen production with subsequent virilization. Another CAH variant, P450 oxidoreductase deficiency, manifests with 46,XX disorder of sex development (DSD), i.e., virilized female genitalia, despite concurrently low circulating androgens. This CAH variant illustrates the existence of an alternative pathway toward the biosynthesis of active androgens in humans which is active in human fetal life only. Thus CAH teaches important lessons from nature, providing privileged insights into the window of human sexual differentiation, and particularly highlighting the importance of steroidogenesis in the process of human sexual differentiation.
Similar articles
- Alternative pathway androgen biosynthesis and human fetal female virilization.
Reisch N, Taylor AE, Nogueira EF, Asby DJ, Dhir V, Berry A, Krone N, Auchus RJ, Shackleton CHL, Hanley NA, Arlt W. Reisch N, et al. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22294-22299. doi: 10.1073/pnas.1906623116. Epub 2019 Oct 14. Proc Natl Acad Sci U S A. 2019. PMID: 31611378 Free PMC article. - [Congenital adrenal hyperplasia].
Stanić M, Nesović M. Stanić M, et al. Med Pregl. 1999 Nov-Dec;52(11-12):447-54. Med Pregl. 1999. PMID: 10748766 Review. Croatian. - Pubertal presentation in seven patients with congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.
Idkowiak J, O'Riordan S, Reisch N, Malunowicz EM, Collins F, Kerstens MN, Köhler B, Graul-Neumann LM, Szarras-Czapnik M, Dattani M, Silink M, Shackleton CH, Maiter D, Krone N, Arlt W. Idkowiak J, et al. J Clin Endocrinol Metab. 2011 Mar;96(3):E453-62. doi: 10.1210/jc.2010-1607. Epub 2010 Dec 29. J Clin Endocrinol Metab. 2011. PMID: 21190981 Free PMC article. - 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes.
Stancampiano MR, Meroni SLC, Bucolo C, Russo G. Stancampiano MR, et al. Front Endocrinol (Lausanne). 2024 May 22;15:1402579. doi: 10.3389/fendo.2024.1402579. eCollection 2024. Front Endocrinol (Lausanne). 2024. PMID: 38841305 Free PMC article. Review. - Steroidogenesis of the testis -- new genes and pathways.
Flück CE, Pandey AV. Flück CE, et al. Ann Endocrinol (Paris). 2014 May;75(2):40-7. doi: 10.1016/j.ando.2014.03.002. Epub 2014 Apr 29. Ann Endocrinol (Paris). 2014. PMID: 24793988 Review.
Cited by
- Diagnostic challenges and management advances in cytochrome P450 oxidoreductase deficiency, a rare form of congenital adrenal hyperplasia, with 46, XX karyotype.
Wang C, Tian Q. Wang C, et al. Front Endocrinol (Lausanne). 2023 Aug 11;14:1226387. doi: 10.3389/fendo.2023.1226387. eCollection 2023. Front Endocrinol (Lausanne). 2023. PMID: 37635957 Free PMC article. Review. - Regulation of retinoid mediated StAR transcription and steroidogenesis in hippocampal neuronal cells: Implications for StAR in protecting Alzheimer's disease.
Manna PR, Reddy AP, Pradeepkiran JA, Kshirsagar S, Reddy PH. Manna PR, et al. Biochim Biophys Acta Mol Basis Dis. 2023 Feb;1869(2):166596. doi: 10.1016/j.bbadis.2022.166596. Epub 2022 Nov 7. Biochim Biophys Acta Mol Basis Dis. 2023. PMID: 36356843 Free PMC article. - Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination.
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Whiteley SL, et al. PLoS Genet. 2021 Apr 15;17(4):e1009465. doi: 10.1371/journal.pgen.1009465. eCollection 2021 Apr. PLoS Genet. 2021. PMID: 33857129 Free PMC article. - Intracrine androgen biosynthesis, metabolism and action revisited.
Schiffer L, Arlt W, Storbeck KH. Schiffer L, et al. Mol Cell Endocrinol. 2018 Apr 15;465:4-26. doi: 10.1016/j.mce.2017.08.016. Epub 2017 Sep 1. Mol Cell Endocrinol. 2018. PMID: 28865807 Free PMC article. Review. - Steroid hormone analysis in diagnosis and treatment of DSD: position paper of EU COST Action BM 1303 'DSDnet'.
Kulle A, Krone N, Holterhus PM, Schuler G, Greaves RF, Juul A, de Rijke YB, Hartmann MF, Saba A, Hiort O, Wudy SA; EU COST Action. Kulle A, et al. Eur J Endocrinol. 2017 May;176(5):P1-P9. doi: 10.1530/EJE-16-0953. Epub 2017 Feb 10. Eur J Endocrinol. 2017. PMID: 28188242 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources