Accelerating molecular modeling applications with graphics processors - PubMed (original) (raw)
. 2007 Dec;28(16):2618-40.
doi: 10.1002/jcc.20829.
Affiliations
- PMID: 17894371
- DOI: 10.1002/jcc.20829
Accelerating molecular modeling applications with graphics processors
John E Stone et al. J Comput Chem. 2007 Dec.
Abstract
Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations are typically 10-100 times faster than heavily optimized CPU-based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed.
(c) 2007 Wiley Periodicals, Inc.
Similar articles
- A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV. Nageswaran JM, et al. Neural Netw. 2009 Jul-Aug;22(5-6):791-800. doi: 10.1016/j.neunet.2009.06.028. Epub 2009 Jul 2. Neural Netw. 2009. PMID: 19615853 - Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.
Zhmurov A, Dima RI, Kholodov Y, Barsegov V. Zhmurov A, et al. Proteins. 2010 Nov 1;78(14):2984-99. doi: 10.1002/prot.22824. Proteins. 2010. PMID: 20715052 - GPU computing for systems biology.
Dematté L, Prandi D. Dematté L, et al. Brief Bioinform. 2010 May;11(3):323-33. doi: 10.1093/bib/bbq006. Epub 2010 Mar 7. Brief Bioinform. 2010. PMID: 20211843 Review. - A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software.
Schmid N, Bötschi M, van Gunsteren WF. Schmid N, et al. J Comput Chem. 2010 Jun;31(8):1636-43. doi: 10.1002/jcc.21447. J Comput Chem. 2010. PMID: 20127715 - Long-timescale molecular dynamics simulations of protein structure and function.
Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Klepeis JL, et al. Curr Opin Struct Biol. 2009 Apr;19(2):120-7. doi: 10.1016/j.sbi.2009.03.004. Epub 2009 Apr 8. Curr Opin Struct Biol. 2009. PMID: 19361980 Review.
Cited by
- Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation.
Richardson NI, Ravenscroft N, Arato V, Oldrini D, Micoli F, Kuttel MM. Richardson NI, et al. Vaccines (Basel). 2021 Apr 27;9(5):432. doi: 10.3390/vaccines9050432. Vaccines (Basel). 2021. PMID: 33925465 Free PMC article. - Accelerators for Classical Molecular Dynamics Simulations of Biomolecules.
Jones D, Allen JE, Yang Y, Drew Bennett WF, Gokhale M, Moshiri N, Rosing TS. Jones D, et al. J Chem Theory Comput. 2022 Jul 12;18(7):4047-4069. doi: 10.1021/acs.jctc.1c01214. Epub 2022 Jun 16. J Chem Theory Comput. 2022. PMID: 35710099 Free PMC article. Review. - Modeling of pneumococcal serogroup 10 capsular polysaccharide molecular conformations provides insight into epitopes and observed cross-reactivity.
Richardson NI, Kuttel MM, Ravenscroft N. Richardson NI, et al. Front Mol Biosci. 2022 Aug 8;9:961532. doi: 10.3389/fmolb.2022.961532. eCollection 2022. Front Mol Biosci. 2022. PMID: 36003080 Free PMC article. - Molecular recognition in the case of flexible targets.
Ivetac A, McCammon JA. Ivetac A, et al. Curr Pharm Des. 2011;17(17):1663-71. doi: 10.2174/138161211796355056. Curr Pharm Des. 2011. PMID: 21619526 Free PMC article. - Accelerating molecular dynamic simulation on graphics processing units.
Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM, Pande VS. Friedrichs MS, et al. J Comput Chem. 2009 Apr 30;30(6):864-72. doi: 10.1002/jcc.21209. J Comput Chem. 2009. PMID: 19191337 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources