Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development - PubMed (original) (raw)
. 2007 Nov;134(21):3827-36.
doi: 10.1242/dev.010223. Epub 2007 Oct 3.
Affiliations
- PMID: 17913785
- DOI: 10.1242/dev.010223
Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development
Rieko Yagi et al. Development. 2007 Nov.
Abstract
Specification of cell lineages in mammals begins shortly after fertilization with formation of a blastocyst consisting of trophectoderm, which contributes exclusively to the placenta, and inner cell mass (ICM), from which the embryo develops. Here we report that ablation of the mouse Tead4 gene results in a preimplantation lethal phenotype, and TEAD4 is one of two highly homologous TEAD transcription factors that are expressed during zygotic gene activation in mouse 2-cell embryos. Tead4(-/-) embryos do not express trophectoderm-specific genes, such as Cdx2, but do express ICM-specific genes, such as Oct4 (also known as Pou5f1). Consequently, Tead4(-/-) morulae do not produce trophoblast stem cells, trophectoderm or blastocoel cavities, and therefore do not implant into the uterine endometrium. However, Tead4(-/-) embryos can produce embryonic stem cells, a derivative of ICM, and if the Tead4 allele is not disrupted until after implantation, then Tead4(-/-) embryos complete development. Thus, Tead4 is the earliest gene shown to be uniquely required for specification of the trophectoderm lineage.
Similar articles
- Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos.
Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H. Nishioka N, et al. Mech Dev. 2008 Mar-Apr;125(3-4):270-83. doi: 10.1016/j.mod.2007.11.002. Epub 2007 Nov 17. Mech Dev. 2008. PMID: 18083014 - TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
Stamatiadis P, Cosemans G, Boel A, Menten B, De Sutter P, Stoop D, Chuva de Sousa Lopes SM, Lluis F, Coucke P, Heindryckx B. Stamatiadis P, et al. Hum Reprod. 2022 Jul 30;37(8):1760-1773. doi: 10.1093/humrep/deac138. Hum Reprod. 2022. PMID: 35700449 - Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment.
Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, Pal A, Vivian JL, Larson M, Petroff M, Gallagher PG, Schulz VP, White KL, Golos TG, Behr B, Paul S. Home P, et al. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7362-7. doi: 10.1073/pnas.1201595109. Epub 2012 Apr 23. Proc Natl Acad Sci U S A. 2012. PMID: 22529382 Free PMC article. - Mechanisms of trophectoderm fate specification in preimplantation mouse development.
Sasaki H. Sasaki H. Dev Growth Differ. 2010 Apr;52(3):263-73. doi: 10.1111/j.1440-169X.2009.01158.x. Epub 2010 Jan 20. Dev Growth Differ. 2010. PMID: 20100249 Review. - Molecular biology of the stress response in the early embryo and its stem cells.
Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Puscheck EE, et al. Adv Exp Med Biol. 2015;843:77-128. doi: 10.1007/978-1-4939-2480-6_4. Adv Exp Med Biol. 2015. PMID: 25956296 Review.
Cited by
- TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma.
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. Wang S, et al. Front Immunol. 2024 Oct 4;15:1480701. doi: 10.3389/fimmu.2024.1480701. eCollection 2024. Front Immunol. 2024. PMID: 39430767 Free PMC article. Review. - The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals.
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, Hamze JG, Toledano-Díaz A, Santiago-Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. Pérez-Gómez A, et al. Development. 2024 Oct 15;151(20):dev202993. doi: 10.1242/dev.202993. Epub 2024 Sep 24. Development. 2024. PMID: 39171364 Free PMC article. - Tead4 and Tfap2c generate bipotency and a bistable switch in totipotent embryos to promote robust lineage diversification.
Zhu M, Meglicki M, Lamba A, Wang P, Royer C, Turner K, Jauhar MA, Jones C, Child T, Coward K, Na J, Zernicka-Goetz M. Zhu M, et al. Nat Struct Mol Biol. 2024 Jun;31(6):964-976. doi: 10.1038/s41594-024-01311-9. Epub 2024 May 24. Nat Struct Mol Biol. 2024. PMID: 38789684 Free PMC article. - A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models.
Dupont C. Dupont C. Front Cell Dev Biol. 2024 Apr 22;12:1386739. doi: 10.3389/fcell.2024.1386739. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 38715920 Free PMC article. Review. - Hippo pathway in cell-cell communication: emerging roles in development and regeneration.
Nita A, Moroishi T. Nita A, et al. Inflamm Regen. 2024 Apr 2;44(1):18. doi: 10.1186/s41232-024-00331-8. Inflamm Regen. 2024. PMID: 38566194 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases