The direction of glycan chain elongation by peptidoglycan glycosyltransferases - PubMed (original) (raw)
. 2007 Oct 24;129(42):12674-5.
doi: 10.1021/ja075965y. Epub 2007 Oct 3.
Affiliations
- PMID: 17914829
- PMCID: PMC3206585
- DOI: 10.1021/ja075965y
The direction of glycan chain elongation by peptidoglycan glycosyltransferases
Deborah L Perlstein et al. J Am Chem Soc. 2007.
Abstract
Peptidoglycan glycosyltransferases (PGTs) are highly conserved enzymes that catalyze the polymerization of Lipid II to form the glycan strands of bacterial murein. Because they play a key role in bacterial cell wall synthesis, these enzymes are potentially important antibiotic targets; however, their mechanisms are not yet understood. One longstanding question about these enzymes is whether they elongate glycan chains by adding subunits to the anomeric (reducing) end or to the 4-hydroxyl (non-reducing) end. We have developed an approach to test the direction of chain elongation that involves the use of nascent peptidoglycan chains which are blocked at their non-reducing ends. In the presence of the PGT domains of Staphylococcus aureus PBP2, Aquifex aeolicus PBP1A, Escherichia coli PBP1A or Escherichia coli PBP1B, these blocked substrates react with Lipid II to form longer glycan chains. These results establish that PGTs elongate nascent peptidoglycan chains by the addition of disaccharide subunits to the anomeric (reducing) end of the growing polymer.
Figures
Figure 1
Natural Lipid II as well Lipid II (1), Lipid IV (3), and Lipid VIII (5) substrate analogs and their Gal-labeled versions (2, 4, and 6).
Figure 2
Models for the direction of glycan polymerization. A) Scheme showing that a glycan strand can be extended by adding new units to the non-reducing end (left) or to the reducing end (right). B) Scheme showing our strategy to test the direction of chain elongation. If the PGT is incubated with Lipid II and a polymer substrate blocked at the non-reducing end with [14C]Gal, then the polymer will only be extended if new units add to the reducing end.
Figure 3
Gel electrophoresis assays to determine the direction of elongation. A) Scheme for the synthesis of the Gal-oligomer substrates. B) Gel electrophoresis of PGT reaction mixtures. Each lane contains either [14C]-Gal-Lipid IV (Lane 1) or the [14C]-Gal-oligomer mix (Lanes 2-9) incubated in the presence or absence of PGT and Lipid II. The PGTs investigated include E. coli PBP1A (Lanes 3-4), E. coli PBP1B (Lane 5), A. aeolicus PBP1A (Lane 6-7), and S. aureus PBP2 (Lane 8-9). The identities of the Gal-labeled oligomers, as assessed by electrophoretic mobilities (Figure S2) and MS analysis of the unlabeled reaction mixture (Table S1), are indicated. Asterisked products arise late in the reaction, presumably as a result of hydrolysis or transglycosylation with diphospholipid. They do not affect the analysis.
Similar articles
- Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. Yuan Y, et al. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5348-53. doi: 10.1073/pnas.0701160104. Epub 2007 Mar 8. Proc Natl Acad Sci U S A. 2007. PMID: 17360321 Free PMC article. - Analysis of glycan polymers produced by peptidoglycan glycosyltransferases.
Barrett D, Wang TS, Yuan Y, Zhang Y, Kahne D, Walker S. Barrett D, et al. J Biol Chem. 2007 Nov 2;282(44):31964-71. doi: 10.1074/jbc.M705440200. Epub 2007 Aug 18. J Biol Chem. 2007. PMID: 17704540 Free PMC article. - Isolated peptidoglycan glycosyltransferases from different organisms produce different glycan chain lengths.
Wang TS, Manning SA, Walker S, Kahne D. Wang TS, et al. J Am Chem Soc. 2008 Oct 29;130(43):14068-9. doi: 10.1021/ja806016y. Epub 2008 Oct 4. J Am Chem Soc. 2008. PMID: 18834124 Free PMC article. - Structure and metabolism of the murein sacculus.
Höltje JV, Glauner B. Höltje JV, et al. Res Microbiol. 1990 Jan;141(1):75-89. doi: 10.1016/0923-2508(90)90100-5. Res Microbiol. 1990. PMID: 2194253 Review. No abstract available. - Structural details of the glycosyltransferase step of peptidoglycan assembly.
Lovering AL, Gretes M, Strynadka NC. Lovering AL, et al. Curr Opin Struct Biol. 2008 Oct;18(5):534-43. doi: 10.1016/j.sbi.2008.07.002. Epub 2008 Sep 1. Curr Opin Struct Biol. 2008. PMID: 18721881 Review.
Cited by
- Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs.
Li L, Woodward RL, Han W, Qu J, Song J, Ma C, Wang PG. Li L, et al. Nat Protoc. 2016 Jul;11(7):1280-98. doi: 10.1038/nprot.2016.067. Epub 2016 Jun 23. Nat Protoc. 2016. PMID: 27336706 Free PMC article. - Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design.
Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S. Yuan Y, et al. ACS Chem Biol. 2008 Jul 18;3(7):429-36. doi: 10.1021/cb800078a. ACS Chem Biol. 2008. PMID: 18642800 Free PMC article. - Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization.
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. Schaefer K, et al. Nat Microbiol. 2021 Jan;6(1):34-43. doi: 10.1038/s41564-020-00808-5. Epub 2020 Nov 9. Nat Microbiol. 2021. PMID: 33168989 Free PMC article. - Primer preactivation of peptidoglycan polymerases.
Wang TS, Lupoli TJ, Sumida Y, Tsukamoto H, Wu Y, Rebets Y, Kahne DE, Walker S. Wang TS, et al. J Am Chem Soc. 2011 Jun 8;133(22):8528-30. doi: 10.1021/ja2028712. Epub 2011 May 17. J Am Chem Soc. 2011. PMID: 21568328 Free PMC article. - Biochemical reconstitution defines new functions for membrane-bound glycosidases in assembly of the bacterial cell wall.
Taguchi A, Page JE, Tsui HT, Winkler ME, Walker S. Taguchi A, et al. Proc Natl Acad Sci U S A. 2021 Sep 7;118(36):e2103740118. doi: 10.1073/pnas.2103740118. Proc Natl Acad Sci U S A. 2021. PMID: 34475211 Free PMC article.
References
- Ostash B, Walker S. Curr. Opin. Chem. Biol. 2005;9:459–466. - PubMed
- Walsh C. Antibiotics: actions, origins, resistance. ASM Press; Washington, D. C.: 2003. pp. 23–49.
- van Heijenoort J. Glycobiology. 2001;11:25R–36R. - PubMed
- Boeggeman E, Ramakrishnan B, Kilgore C, Khidekel N, Hsieh-Wilson LC, Simpson JT, Qasba PK. Bioconjug. Chem. 2007;18:806–14. - PMC - PubMed
- Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC. Nat. Chem. Biol. 2007;3:339–48. - PubMed
- Roquemore EP, Chou TY, Hart GW. Methods Enzymol. 1994;230:443–60. - PubMed
- Schindler M, Mirelman D, Schwarz U. Eur. J. Biochem. 1976;71:131–134. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources