Live imaging of emerging hematopoietic stem cells and early thymus colonization - PubMed (original) (raw)
. 2008 Feb 1;111(3):1147-56.
doi: 10.1182/blood-2007-07-099499. Epub 2007 Oct 12.
Affiliations
- PMID: 17934068
- DOI: 10.1182/blood-2007-07-099499
Free article
Live imaging of emerging hematopoietic stem cells and early thymus colonization
Karima Kissa et al. Blood. 2008.
Free article
Abstract
We recently demonstrated in zebrafish the developmental migration of emerging hematopoietic stem cells (HSCs) that is thought to occur in mammalian embryos, from the aorta-gonad-mesonephros (AGM) area to the successive hematopoietic organs. CD41 is the earliest known molecular marker of nascent HSCs in mammalian development. In this study, we show that in CD41-green fluorescent protein (GFP) transgenic zebrafish embryos, the transgene is expressed by emerging HSCs in the AGM, allowing us for the first time to image their behavior and trace them in real time. We find that the zebrafish AGM contains no intra-aortic cell clusters, so far considered a hallmark of HSC emergence. CD41GFP(low) HSCs emerge in the subaortic mesenchyme and enter the circulation not through the dorsal aorta but through the axial vein, the peculiar structure of which facilitates their intravasation. The rise in CD41-gfp expression among c-myb(+) HSC precursors is asynchronous and marks their competence to leave the AGM and immediately seed the caudal hematopoietic tissue (which has a hematopoietic function analogous to that of the mammalian fetal liver). Imaging the later migration of CD41-GFP(+) precursors to the nascent thymus reveals that although some reach the thymus by extravasating from the nearest vein, most travel for hours through the mesenchyme from surprisingly diverse and remote sites of extravasation.
Similar articles
- CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis.
Bertrand JY, Kim AD, Teng S, Traver D. Bertrand JY, et al. Development. 2008 May;135(10):1853-62. doi: 10.1242/dev.015297. Epub 2008 Apr 16. Development. 2008. PMID: 18417622 Free PMC article. - Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture.
Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A. Batsivari A, et al. Stem Cell Reports. 2017 Jun 6;8(6):1549-1562. doi: 10.1016/j.stemcr.2017.04.003. Epub 2017 May 4. Stem Cell Reports. 2017. PMID: 28479304 Free PMC article. - Fibroblastic potential of CD41+ cells in the mouse aorta-gonad-mesonephros region and yolk sac.
Zhou J, Chen H, Li S, Xie Y, He W, Nan X, Yue W, Liu B, Pei X. Zhou J, et al. Stem Cells Dev. 2012 Sep 20;21(14):2592-605. doi: 10.1089/scd.2011.0572. Epub 2012 May 17. Stem Cells Dev. 2012. PMID: 22489670 - [Current status of study on embryonic hematopoietic development in aorta-gonad-mesonephros -- review].
He WY, Liu B, Mao N. He WY, et al. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009 Feb;17(1):243-6. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009. PMID: 19236789 Review. Chinese. - Role of the microenvironment of the embryonic aorta-gonad-mesonephros region in hematopoiesis.
Nishikawa M, Tahara T, Hinohara A, Miyajima A, Nakahata T, Shimosaka A. Nishikawa M, et al. Ann N Y Acad Sci. 2001 Jun;938:109-16. doi: 10.1111/j.1749-6632.2001.tb03579.x. Ann N Y Acad Sci. 2001. PMID: 11458497 Review.
Cited by
- Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species.
Aldersey JE, Lange MD, Beck BH, Abernathy JW. Aldersey JE, et al. PLoS One. 2024 Sep 26;19(9):e0309397. doi: 10.1371/journal.pone.0309397. eCollection 2024. PLoS One. 2024. PMID: 39325796 Free PMC article. - Understanding vertebrate immunity through comparative immunology.
Boehm T. Boehm T. Nat Rev Immunol. 2024 Sep 24. doi: 10.1038/s41577-024-01083-9. Online ahead of print. Nat Rev Immunol. 2024. PMID: 39317775 Review. - The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish.
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. Bornhorst D, et al. Nat Commun. 2024 Aug 31;15(1):7589. doi: 10.1038/s41467-024-51920-7. Nat Commun. 2024. PMID: 39217144 Free PMC article. - Endothelial cell transitions in zebrafish vascular development.
Phng LK, Hogan BM. Phng LK, et al. Dev Growth Differ. 2024 Aug;66(6):357-368. doi: 10.1111/dgd.12938. Epub 2024 Jul 27. Dev Growth Differ. 2024. PMID: 39072708 Free PMC article. Review. - Inflammation in Development and Aging: Insights from the Zebrafish Model.
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Mastrogiovanni M, et al. Int J Mol Sci. 2024 Feb 10;25(4):2145. doi: 10.3390/ijms25042145. Int J Mol Sci. 2024. PMID: 38396822 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases