Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications - PubMed (original) (raw)
Review
Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications
Ira Tabas et al. Circulation. 2007.
Abstract
The key initiating process in atherogenesis is the subendothelial retention of apolipoprotein B-containing lipoproteins. Local biological responses to these retained lipoproteins, including a chronic and maladaptive macrophage- and T-cell-dominated inflammatory response, promote subsequent lesion development. The most effective therapy against atherothrombotic cardiovascular disease to date--low density lipoprotein-lowering drugs--is based on the principle that decreasing circulating apolipoprotein B lipoproteins decreases the probability that they will enter and be retained in the subendothelium. Ongoing improvements in this area include more aggressive lowering of low-density lipoprotein and other atherogenic lipoproteins in the plasma and initiation of low-density lipoprotein-lowering therapy at an earlier age in at-risk individuals. Potential future therapeutic approaches include attempts to block the interaction of apolipoprotein B lipoproteins with the specific subendothelial matrix molecules that mediate retention and to interfere with accessory molecules within the arterial wall that promote retention such as lipoprotein lipase, secretory sphingomyelinase, and secretory phospholipase A2. Although not the primary focus of this review, therapeutic strategies that target the proatherogenic responses to retained lipoproteins and that promote the removal of atherogenic components of retained lipoproteins also hold promise. The finding that certain human populations of individuals who maintain lifelong low plasma levels of apolipoprotein B lipoproteins have an approximately 90% decreased risk of coronary artery disease gives hope that our further understanding of the pathogenesis of this leading killer could lead to its eradication.
Similar articles
- Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL, Borén J. Skålén K, et al. Nature. 2002 Jun 13;417(6890):750-4. doi: 10.1038/nature00804. Nature. 2002. PMID: 12066187 - New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease.
Tsimikas S, Tsironis LD, Tselepis AD. Tsimikas S, et al. Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2094-9. doi: 10.1161/01.ATV.0000280571.28102.d4. Epub 2007 Jul 12. Arterioscler Thromb Vasc Biol. 2007. PMID: 17626905 Review. - The role of oxidized phospholipids in mediating lipoprotein(a) atherogenicity.
Tsimikas S, Witztum JL. Tsimikas S, et al. Curr Opin Lipidol. 2008 Aug;19(4):369-77. doi: 10.1097/MOL.0b013e328308b622. Curr Opin Lipidol. 2008. PMID: 18607184 Review. - Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis.
Olofsson SO, Borèn J. Olofsson SO, et al. J Intern Med. 2005 Nov;258(5):395-410. doi: 10.1111/j.1365-2796.2005.01556.x. J Intern Med. 2005. PMID: 16238675 Review. - Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase.
Gustafsson M, Levin M, Skålén K, Perman J, Fridén V, Jirholt P, Olofsson SO, Fazio S, Linton MF, Semenkovich CF, Olivecrona G, Borén J. Gustafsson M, et al. Circ Res. 2007 Oct 12;101(8):777-83. doi: 10.1161/CIRCRESAHA.107.149666. Epub 2007 Aug 30. Circ Res. 2007. PMID: 17761930
Cited by
- Transport of LDLs into the arterial wall: impact in atherosclerosis.
Zhang X, Fernández-Hernando C. Zhang X, et al. Curr Opin Lipidol. 2020 Oct;31(5):279-285. doi: 10.1097/MOL.0000000000000701. Curr Opin Lipidol. 2020. PMID: 32773465 Free PMC article. Review. - Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses.
Huan T, Rong J, Tanriverdi K, Meng Q, Bhattacharya A, McManus DD, Joehanes R, Assimes TL, McPherson R, Samani NJ, Erdmann J, Schunkert H, Courchesne P, Munson PJ, Johnson AD, O'Donnell CJ, Zhang B, Larson MG, Freedman JE, Levy D, Yang X. Huan T, et al. Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):1011-21. doi: 10.1161/ATVBAHA.114.305176. Epub 2015 Feb 5. Arterioscler Thromb Vasc Biol. 2015. PMID: 25657313 Free PMC article. - The Dynamics of Cardiovascular Risk-An Analysis of the Prospective Urban Rural Epidemiology (PURE) Poland Cohort Study.
Lubieniecki P, Lewandowski Ł, Wołyniec M, Połtyn-Zaradna K, Zatońska K, Szuba A. Lubieniecki P, et al. J Clin Med. 2024 Jun 26;13(13):3728. doi: 10.3390/jcm13133728. J Clin Med. 2024. PMID: 38999293 Free PMC article. - Sphingolipid signaling in metabolic disorders.
Hla T, Dannenberg AJ. Hla T, et al. Cell Metab. 2012 Oct 3;16(4):420-34. doi: 10.1016/j.cmet.2012.06.017. Epub 2012 Sep 13. Cell Metab. 2012. PMID: 22982021 Free PMC article. Review. - Free radicals and endothelial dysfunction: potential positive effects of TNF-α inhibitors.
Murdaca G, Spanò F, Cagnati P, Puppo F. Murdaca G, et al. Redox Rep. 2013;18(3):95-9. doi: 10.1179/1351000213Y.0000000046. Epub 2013 May 10. Redox Rep. 2013. PMID: 23676793 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical