O-GlcNAc modification in diabetes and Alzheimer's disease - PubMed (original) (raw)
Review
doi: 10.1039/b704905f. Epub 2007 Aug 29.
Affiliations
- PMID: 17940659
- DOI: 10.1039/b704905f
Review
O-GlcNAc modification in diabetes and Alzheimer's disease
Wagner B Dias et al. Mol Biosyst. 2007 Nov.
Abstract
Similar to phosphorylation, O-GlcNAcylation (or simply GlcNAcylation) is an abundant, dynamic, and inducible post-translational modification. In some cases, GlcNAcylation and phosphorylation occur at the same or adjacent sites, modulating each other. GlcNAcylated proteins are crucial in regulating virtually all cellular processes, including signaling, cell cycle, and transcription, among others. GlcNAcylation affects protein-protein interactions, activity, stability, and expression. Several GlcNAcylated proteins are involved in diabetes and Alzheimer's disease. Hyperglycemia increases GlcNAcylation of proteins within the insulin signaling pathway and contributes to insulin resistance. In addition, hyperinsulinemia and hyperlipidemia are also associated with increased GlcNAcylation, which affect and regulate several insulin signaling proteins, as well as proteins involved on the pathology of diabetes. With respect to Alzheimer's disease, several proteins involved in the etiology of the disease, including tau, neurofilaments, beta-amyloid precursor protein, and synaptosomal proteins are GlcNAcylated in normal brain. The impairment of brain glucose uptake/metabolism is a known metabolic defect in Alzheimer's neurons. Data support the hypothesis that hypoglycemia within the brain may reduce the normal GlcNAcylation of tau, exposing kinase acceptor sites, thus leading to hyperphosphorylation, which induces tangle formation and neuronal death. Alzheimer's disease and type II diabetes represent two metabolic disorders where dysfunctional protein GlcNAcylation/phosphorylation may be important for disease pathology.
Similar articles
- [O-GlcNAc glycosylation and regulation of cell signaling].
Issad T. Issad T. Med Sci (Paris). 2010 Aug-Sep;26(8-9):753-9. doi: 10.1051/medsci/2010268-9753. Med Sci (Paris). 2010. PMID: 20819714 Review. French. - O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau.
Yu CH, Si T, Wu WH, Hu J, Du JT, Zhao YF, Li YM. Yu CH, et al. Biochem Biophys Res Commun. 2008 Oct 10;375(1):59-62. doi: 10.1016/j.bbrc.2008.07.101. Epub 2008 Jul 29. Biochem Biophys Res Commun. 2008. PMID: 18671940 - Activation of PPARgamma negatively regulates O-GlcNAcylation of Sp1.
Chung SS, Kim JH, Park HS, Choi HH, Lee KW, Cho YM, Lee HK, Park KS. Chung SS, et al. Biochem Biophys Res Commun. 2008 Aug 8;372(4):713-8. doi: 10.1016/j.bbrc.2008.05.096. Epub 2008 May 28. Biochem Biophys Res Commun. 2008. PMID: 18513490 - O-GlcNAc modification, insulin signaling and diabetic complications.
Issad T, Masson E, Pagesy P. Issad T, et al. Diabetes Metab. 2010 Dec;36(6 Pt 1):423-35. doi: 10.1016/j.diabet.2010.09.001. Epub 2010 Nov 11. Diabetes Metab. 2010. PMID: 21074472 Review. - O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-β precursor protein (APP).
Jacobsen KT, Iverfeldt K. Jacobsen KT, et al. Biochem Biophys Res Commun. 2011 Jan 21;404(3):882-6. doi: 10.1016/j.bbrc.2010.12.080. Epub 2010 Dec 21. Biochem Biophys Res Commun. 2011. PMID: 21182826
Cited by
- Cell Energy Metabolism and Hyaluronan Synthesis.
Caon I, Parnigoni A, Viola M, Karousou E, Passi A, Vigetti D. Caon I, et al. J Histochem Cytochem. 2021 Jan;69(1):35-47. doi: 10.1369/0022155420929772. Epub 2020 Jul 6. J Histochem Cytochem. 2021. PMID: 32623953 Free PMC article. Review. - Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers.
Cieniewski-Bernard C, Montel V, Berthoin S, Bastide B. Cieniewski-Bernard C, et al. PLoS One. 2012;7(10):e48218. doi: 10.1371/journal.pone.0048218. Epub 2012 Oct 24. PLoS One. 2012. PMID: 23110217 Free PMC article. - Schwann cell O-GlcNAcylation promotes peripheral nerve remyelination via attenuation of the AP-1 transcription factor JUN.
Kim S, Maynard JC, Strickland A, Burlingame AL, Milbrandt J. Kim S, et al. Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):8019-8024. doi: 10.1073/pnas.1805538115. Epub 2018 Jul 16. Proc Natl Acad Sci U S A. 2018. PMID: 30012597 Free PMC article. - Coenzyme A-Dependent Tricarboxylic Acid Cycle Enzymes Are Decreased in Alzheimer's Disease Consistent With Cerebral Pantothenate Deficiency.
Sang C, Philbert SA, Hartland D, Unwin RD, Dowsey AW, Xu J, Cooper GJS. Sang C, et al. Front Aging Neurosci. 2022 Jun 10;14:893159. doi: 10.3389/fnagi.2022.893159. eCollection 2022. Front Aging Neurosci. 2022. PMID: 35754968 Free PMC article. - Potent GH20 N-Acetyl-β-d-hexosaminidase Inhibitors: N-Substituted 3-acetamido-4-amino-5-hydroxymethyl-cyclopentanediols.
Weber P, Nasseri SA, Pabst BM, Torvisco A, Müller P, Paschke E, Tschernutter M, Windischhofer W, Withers SG, Wrodnigg TM, Stütz AE. Weber P, et al. Molecules. 2018 Mar 20;23(3):708. doi: 10.3390/molecules23030708. Molecules. 2018. PMID: 29558439 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- CA42486/CA/NCI NIH HHS/United States
- DK61671/DK/NIDDK NIH HHS/United States
- DK71280/DK/NIDDK NIH HHS/United States
- HD13563/HD/NICHD NIH HHS/United States
- N01-HV-28180/HV/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical