K(ATP) channel pharmacogenomics: from bench to bedside - PubMed (original) (raw)
Review
K(ATP) channel pharmacogenomics: from bench to bedside
S Sattiraju et al. Clin Pharmacol Ther. 2008 Feb.
Abstract
Inheritance plays a significant role in defining drug response and toxicity. Advances in molecular pharmacology and modern genomics emphasize genetic variation in dictating inter-individual pharmacokinetics and pharmacodynamics. A case in point is the homeostatic ATP-sensitive potassium (K(ATP)) channel, an established drug target that adjusts membrane excitability to match cellular energetic demand. There is an increased recognition that genetic variability of the K(ATP) channel impacts therapeutic decision-making in human disease.
Conflict of interest statement
CONFLICT OF INTEREST
The authors declared no conflict of interest.
Figures
Figure 1
KATP channels in the pancreatic β-cell control insulin release. Hyperglycemia translates into increased transport of glucose into β-cells, resulting in elevated intracellular ATP promoting closure of KATP channels and membrane depolarization leading to opening of voltage-gated Ca2 +channels and Ca2+influx, which triggers insulin release. Inactivating KATP channel mutations lead to overactivated insulin release and HHI, whereas activating channel mutations induce membrane hyperpolarization, impairing insulin release and resulting in neonatal diabetes mellitus (NDM).
Figure 2
The KATP channel sensitivity to ATP determines clinical outcome. Genetic variation in KCNJ11 and _ABCC8-_encoded Kir6.2 and SUR1 subunits translates into varying degrees of disease severity correlating with altered sensitivity of the ATP channel. Representative polymorphisms in KCNJ11 and ABCC8 lead to phenotypes that range from transient forms of neonatal diabetes mellitus (NDM) to the more severe developmental delay, epilepsy, and permanent neonatal diabetes (DEND) syndrome.
Similar articles
- Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.
Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL. Pratt EB, et al. J Biol Chem. 2009 Mar 20;284(12):7951-9. doi: 10.1074/jbc.M807012200. Epub 2009 Jan 16. J Biol Chem. 2009. PMID: 19151370 Free PMC article. - ATP-sensitive potassium channels--neonatal diabetes mellitus and beyond.
Sperling MA. Sperling MA. N Engl J Med. 2006 Aug 3;355(5):507-10. doi: 10.1056/NEJMe068142. N Engl J Med. 2006. PMID: 16885555 No abstract available. - Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
Jin JY, Park SH, Bae JH, Cho HC, Lim JG, Park WS, Han J, Lee JH, Song DK. Jin JY, et al. Pharmacol Res. 2007 Sep;56(3):237-47. doi: 10.1016/j.phrs.2007.06.004. Epub 2007 Jun 21. Pharmacol Res. 2007. PMID: 17656102 - Treating diabetes today: a matter of selectivity of sulphonylureas.
Seino S, Takahashi H, Takahashi T, Shibasaki T. Seino S, et al. Diabetes Obes Metab. 2012 Jan;14 Suppl 1:9-13. doi: 10.1111/j.1463-1326.2011.01507.x. Diabetes Obes Metab. 2012. PMID: 22118705 Review. - Insulin secretagogues, sulfonylurea receptors and K(ATP) channels.
Bryan J, Crane A, Vila-Carriles WH, Babenko AP, Aguilar-Bryan L. Bryan J, et al. Curr Pharm Des. 2005;11(21):2699-716. doi: 10.2174/1381612054546879. Curr Pharm Des. 2005. PMID: 16101450 Review.
Cited by
- Pharmacogenetics of Potassium Channel Blockers.
Roden DM. Roden DM. Card Electrophysiol Clin. 2016 Jun;8(2):385-93. doi: 10.1016/j.ccep.2016.02.003. Card Electrophysiol Clin. 2016. PMID: 27261829 Free PMC article. Review. - Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data.
Mannino GC, Sesti G. Mannino GC, et al. Mol Diagn Ther. 2012 Oct;16(5):285-302. doi: 10.1007/s40291-012-0002-7. Mol Diagn Ther. 2012. PMID: 23018631 Review. - A patient suffering from hypokalemic periodic paralysis is deficient in skeletal muscle ATP-sensitive K channels.
Jovanović S, Du Q, Mukhopadhyay S, Swingler R, Buckley R, McEachen J, Jovanović A. Jovanović S, et al. Clin Transl Sci. 2008 May;1(1):71-4. doi: 10.1111/j.1752-8062.2008.00007.x. Clin Transl Sci. 2008. PMID: 20396605 Free PMC article. - KCNJ11 knockout morula re-engineered by stem cell diploid aggregation.
Nelson TJ, Martinez-Fernandez A, Terzic A. Nelson TJ, et al. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):269-76. doi: 10.1098/rstb.2008.0179. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 18977736 Free PMC article. - Targeted disruption of K(ATP) channels aggravates cardiac toxicity in cocaine abuse.
Reyes S, Kane GC, Zingman LV, Yamada S, Terzic A. Reyes S, et al. Clin Transl Sci. 2009 Oct;2(5):361-5. doi: 10.1111/j.1752-8062.2009.00145.x. Clin Transl Sci. 2009. PMID: 20443920 Free PMC article.
References
- Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. 2006;57:119–137. - PubMed
- Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu Rev Genomics Hum Genet. 2006;7:223–245. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL064822/HL/NHLBI NIH HHS/United States
- R01 HL064822-08/HL/NHLBI NIH HHS/United States
- T32 GM008685/GM/NIGMS NIH HHS/United States
- T32-GM008685/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical