Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition - PubMed (original) (raw)
Review
Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition
Adam R Aron et al. J Neurosci. 2007.
No abstract available
Figures
Figure 1.
A, The interactive race model between Go and Stop processes (Boucher et al., 2007). The parameters were estimated by fitting the model to thousands of behavioral trials from a monkey neurophysiology study. B, Schematic of fronto-basal-ganglia circuitry for Going and Stopping. The Go process is generated by premotor cortex, which excites striatum and inhibits globus pallidus, removing inhibition from thalamus and exciting motor cortex (see text for details). The stopping process could be generated by inferior frontal cortex leading to activation of the subthalamic nucleus, increasing broad excitation of pallidum and inhibiting thalamocortical output, reducing activation in motor cortex. C, Diffusion-weighted imaging reveals putative white matter tracts in the right hemisphere between the dorsomedial preSMA, the ventrolateral PFC or IFC, and the putative region of the STN. Reproduced with permission from Aron et al. (2007). D, Regions of the rat brain implicated in behavioral stopping. Stopping is significantly impaired following excitotoxic lesions within the regions highlighted in red, whereas lesions within the gray-colored regions have no effect on stopping. OF, Orbitofrontal cortex; IL, infralimbic cortex; PL, prelimbic cortex; DM Str, dorsomedial striatum; NAC, nucleus accumbens (core); DH, dorsal hippocampus; VH, ventral hippocampus; GPi, globus pallidus pars interna.
Similar articles
- Functional neuroanatomy and behavioural correlates of the basal ganglia: evidence from lesion studies.
Ward P, Seri And S, Cavanna AE. Ward P, et al. Behav Neurol. 2013;26(4):219-23. doi: 10.3233/BEN-2012-120264. Behav Neurol. 2013. PMID: 22713407 Free PMC article. Review. - Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms.
Hikosaka O, Isoda M. Hikosaka O, et al. Trends Cogn Sci. 2010 Apr;14(4):154-61. doi: 10.1016/j.tics.2010.01.006. Epub 2010 Feb 22. Trends Cogn Sci. 2010. PMID: 20181509 Free PMC article. Review. - Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies.
Middleton FA, Strick PL. Middleton FA, et al. Brain Cogn. 2000 Mar;42(2):183-200. doi: 10.1006/brcg.1999.1099. Brain Cogn. 2000. PMID: 10744919 Review. - How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
Jahfari S, Verbruggen F, Frank MJ, Waldorp LJ, Colzato L, Ridderinkhof KR, Forstmann BU. Jahfari S, et al. J Neurosci. 2012 Aug 8;32(32):10870-8. doi: 10.1523/JNEUROSCI.0902-12.2012. J Neurosci. 2012. PMID: 22875921 Free PMC article. - The cortico-basal ganglia integrative network: the role of the thalamus.
Haber SN, Calzavara R. Haber SN, et al. Brain Res Bull. 2009 Feb 16;78(2-3):69-74. doi: 10.1016/j.brainresbull.2008.09.013. Epub 2008 Oct 23. Brain Res Bull. 2009. PMID: 18950692 Free PMC article. Review.
Cited by
- Proactive and reactive control by the medial frontal cortex.
Stuphorn V, Emeric EE. Stuphorn V, et al. Front Neuroeng. 2012 Jun 19;5:9. doi: 10.3389/fneng.2012.00009. eCollection 2012. Front Neuroeng. 2012. PMID: 22723779 Free PMC article. - Interactions between affective and cognitive processing systems in problematic gamblers: a functional connectivity study.
van Holst RJ, van der Meer JN, McLaren DG, van den Brink W, Veltman DJ, Goudriaan AE. van Holst RJ, et al. PLoS One. 2012;7(11):e49923. doi: 10.1371/journal.pone.0049923. Epub 2012 Nov 28. PLoS One. 2012. PMID: 23209619 Free PMC article. - Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.
Muraskin J, Dodhia S, Lieberman G, Garcia JO, Verstynen T, Vettel JM, Sherwin J, Sajda P. Muraskin J, et al. Hum Brain Mapp. 2016 Dec;37(12):4454-4471. doi: 10.1002/hbm.23321. Epub 2016 Jul 22. Hum Brain Mapp. 2016. PMID: 27448098 Free PMC article. - Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance.
Chavan CF, Manuel AL, Mouthon M, Spierer L. Chavan CF, et al. Front Hum Neurosci. 2013 Jun 6;7:238. doi: 10.3389/fnhum.2013.00238. eCollection 2013. Front Hum Neurosci. 2013. PMID: 23761747 Free PMC article. Retracted. - Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion.
Ochsner KN, Silvers JA, Buhle JT. Ochsner KN, et al. Ann N Y Acad Sci. 2012 Mar;1251:E1-24. doi: 10.1111/j.1749-6632.2012.06751.x. Ann N Y Acad Sci. 2012. PMID: 23025352 Free PMC article. Review.
References
- Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1285–1292. - PubMed
- Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci. 2003;6:115–116. - PubMed
- Aron AR, Monsell S, Sahakian BJ, Robbins TW. A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain. 2004;127:1561–1573. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources