Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases - PubMed (original) (raw)
. 2008 Feb 1;17(3):431-9.
doi: 10.1093/hmg/ddm320. Epub 2007 Nov 1.
Esther S P Wong, Donald S Kirkpatrick, Olga Pletnikova, Han Seok Ko, Shiam-Peng Tay, Michelle W L Ho, Juan Troncoso, Steven P Gygi, Michael K Lee, Valina L Dawson, Ted M Dawson, Kah-Leong Lim
Affiliations
- PMID: 17981811
- DOI: 10.1093/hmg/ddm320
Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases
Jeanne M M Tan et al. Hum Mol Genet. 2008.
Abstract
Although ubiquitin-enriched protein inclusions represent an almost invariant feature of neurodegenerative diseases, the mechanism underlying their biogenesis remains unclear. In particular, whether the topology of ubiquitin linkages influences the dynamics of inclusions is not well explored. Here, we report that lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitination, as well as monoubiquitin modification contribute to the biogenesis of inclusions. K63-linked polyubiquitin is the most consistent enhancer of inclusions formation. Under basal conditions, ectopic expression of K63 mutant ubiquitin in cultured cells promotes the accumulation of proteins and the formation of intracellular inclusions in the apparent absence of proteasome impairment. When co-expressed with disease-associated tau and SOD1 mutants, K63 ubiquitin mutant facilitates the formation of tau- and SOD-1-positive inclusions. Moreover, K63-linked ubiquitination was found to selectively facilitate the clearance of inclusions via autophagy. These data indicate that K63-linked ubiquitin chains may represent a common denominator underlying inclusions biogenesis, as well as a general cellular strategy for defining cargo destined for the autophagic system. Collectively, our results provide a novel mechanistic route that underlies the life cycle of an inclusion body. Harnessing this pathway may offer innovative approaches in the treatment of neurodegenerative disorders.
Similar articles
- Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway.
Olzmann JA, Chin LS. Olzmann JA, et al. Autophagy. 2008 Jan;4(1):85-7. doi: 10.4161/auto.5172. Epub 2007 Oct 15. Autophagy. 2008. PMID: 17957134 Free PMC article. - Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains.
Wang H, Ying Z, Wang G. Wang H, et al. J Biol Chem. 2012 Aug 17;287(34):28576-85. doi: 10.1074/jbc.M111.299990. Epub 2012 Jul 3. J Biol Chem. 2012. PMID: 22761419 Free PMC article. - Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation.
Lim KL, Chew KC, Tan JM, Wang C, Chung KK, Zhang Y, Tanaka Y, Smith W, Engelender S, Ross CA, Dawson VL, Dawson TM. Lim KL, et al. J Neurosci. 2005 Feb 23;25(8):2002-9. doi: 10.1523/JNEUROSCI.4474-04.2005. J Neurosci. 2005. PMID: 15728840 Free PMC article. - Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases?
Lim KL, Dawson VL, Dawson TM. Lim KL, et al. Neurobiol Aging. 2006 Apr;27(4):524-9. doi: 10.1016/j.neurobiolaging.2005.07.023. Epub 2005 Oct 6. Neurobiol Aging. 2006. PMID: 16213628 Review. - K63-linked ubiquitination and neurodegeneration.
Lim KL, Lim GG. Lim KL, et al. Neurobiol Dis. 2011 Jul;43(1):9-16. doi: 10.1016/j.nbd.2010.08.001. Epub 2010 Aug 7. Neurobiol Dis. 2011. PMID: 20696248 Review.
Cited by
- CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression.
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, Zhang HL, Yu Y, Chen YH, Feng GK, Deng R, Li JD, Zhu XF. Li X, et al. Autophagy. 2021 Dec;17(12):4323-4340. doi: 10.1080/15548627.2021.1912270. Epub 2021 May 12. Autophagy. 2021. PMID: 33977871 Free PMC article. - Molecular determinants of selective clearance of protein inclusions by autophagy.
Wong E, Bejarano E, Rakshit M, Lee K, Hanson HH, Zaarur N, Phillips GR, Sherman MY, Cuervo AM. Wong E, et al. Nat Commun. 2012;3:1240. doi: 10.1038/ncomms2244. Nat Commun. 2012. PMID: 23212369 Free PMC article. - Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease.
Roca-Agujetas V, Barbero-Camps E, de Dios C, Podlesniy P, Abadin X, Morales A, Marí M, Trullàs R, Colell A. Roca-Agujetas V, et al. Mol Neurodegener. 2021 Mar 8;16(1):15. doi: 10.1186/s13024-021-00435-6. Mol Neurodegener. 2021. PMID: 33685483 Free PMC article. - Cytosolic PTEN-induced Putative Kinase 1 Is Stabilized by the NF-κB Pathway and Promotes Non-selective Mitophagy.
Lim GG, Chua DS, Basil AH, Chan HY, Chai C, Arumugam T, Lim KL. Lim GG, et al. J Biol Chem. 2015 Jul 3;290(27):16882-93. doi: 10.1074/jbc.M114.622399. Epub 2015 May 18. J Biol Chem. 2015. PMID: 25987559 Free PMC article. - The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy.
Zientara-Rytter K, Subramani S. Zientara-Rytter K, et al. Cells. 2019 Jan 10;8(1):40. doi: 10.3390/cells8010040. Cells. 2019. PMID: 30634694 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous