Bone metastasis: pathogenesis and therapeutic implications - PubMed (original) (raw)
Review
Bone metastasis: pathogenesis and therapeutic implications
Philippe Clezardin et al. Clin Exp Metastasis. 2007.
Abstract
Advanced cancers are prone to metastasize. Visceral metastases are more likely to be fatal, while patients with only metastases to bone can survive up to 10 years or more. However, effective treatments for bone metastases are not yet available and bisphosphonates improve the quality of life with no life-prolonging benefits. Bone metastases are classified as osteolytic, osteosclerotic or mixed lesions according to the bone cell types more prominently involved. Either conditions induce high morbidity and dramatically increase the risk of pathological fractures. Several molecular mechanisms bring about cancer cells to metastasize to bone, and osteotropic cancer cells are believed to acquire bone cell-like properties which improve homing, adhesion, proliferation and survival in the bone microenvironment. The acquisition of a bone cell pseudo-phenotype, denominated osteomimicry, is likely to rely on expression of osteoblastic and osteoclastic genes, thus requiring a multigenic programme. Several microenvironmental factors improve the ability of cancer cells to develop at skeletal sites, and a reciprocal deleterious stimulation generates a vicious cycle between the tumour cells and the cells residing in the bone environment. The impact of the stem cell niche in the development of bone metastases and in the phenomenon of tumour dormancy, that allows tumour cells to remain quiescent for decades before establishing overt lesions, is at present only speculative. However, the osteoblast niche, known to maintain the haematopoietic stem cell population in a quiescent status, is likely to be involved in the development of bone metastases and this promising research field is rapidly expanding.
Similar articles
- Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone.
Clines GA, Guise TA. Clines GA, et al. Endocr Relat Cancer. 2005 Sep;12(3):549-83. doi: 10.1677/erc.1.00543. Endocr Relat Cancer. 2005. PMID: 16172192 Review. - Bisphosphonates for breast cancer.
Pavlakis N, Schmidt R, Stockler M. Pavlakis N, et al. Cochrane Database Syst Rev. 2005 Jul 20;(3):CD003474. doi: 10.1002/14651858.CD003474.pub2. Cochrane Database Syst Rev. 2005. PMID: 16034900 Updated. Review. - Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.
Elshafae SM, Dirksen WP, Alasonyalilar-Demirer A, Breitbach J, Yuan S, Kantake N, Supsavhad W, Hassan BB, Attia Z, Alstadt LB, Rosol TJ. Elshafae SM, et al. Prostate. 2020 Jun;80(9):698-714. doi: 10.1002/pros.23983. Epub 2020 Apr 29. Prostate. 2020. PMID: 32348616 Free PMC article. - More advantages in detecting bone and soft tissue metastases from prostate cancer using 18F-PSMA PET/CT.
Pianou NK, Stavrou PZ, Vlontzou E, Rondogianni P, Exarhos DN, Datseris IE. Pianou NK, et al. Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7. Hell J Nucl Med. 2019. PMID: 30843003 - Basic mechanisms responsible for osteolytic and osteoblastic bone metastases.
Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM. Guise TA, et al. Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6213s-6216s. doi: 10.1158/1078-0432.CCR-06-1007. Clin Cancer Res. 2006. PMID: 17062703 Review.
Cited by
- Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes.
Maroni P, Bendinelli P. Maroni P, et al. Cancers (Basel). 2020 Jul 6;12(7):1812. doi: 10.3390/cancers12071812. Cancers (Basel). 2020. PMID: 32640686 Free PMC article. Review. - Development and characterization of murine models of medulloblastoma extraneural growth in bone.
Grunda JM, Wang D, Clines GA. Grunda JM, et al. Clin Exp Metastasis. 2013 Aug;30(6):769-79. doi: 10.1007/s10585-013-9577-6. Epub 2013 Mar 15. Clin Exp Metastasis. 2013. PMID: 23494821 - Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects.
Anez-Bustillos L, Derikx LC, Verdonschot N, Calderon N, Zurakowski D, Snyder BD, Nazarian A, Tanck E. Anez-Bustillos L, et al. Bone. 2014 Jan;58:160-7. doi: 10.1016/j.bone.2013.10.009. Epub 2013 Oct 18. Bone. 2014. PMID: 24145305 Free PMC article. - Cancer-associated bone disease.
Rizzoli R, Body JJ, Brandi ML, Cannata-Andia J, Chappard D, El Maghraoui A, Glüer CC, Kendler D, Napoli N, Papaioannou A, Pierroz DD, Rahme M, Van Poznak CH, de Villiers TJ, El Hajj Fuleihan G; International Osteoporosis Foundation Committee of Scientific Advisors Working Group on Cancer-Induced Bone Disease. Rizzoli R, et al. Osteoporos Int. 2013 Dec;24(12):2929-53. doi: 10.1007/s00198-013-2530-3. Epub 2013 Oct 22. Osteoporos Int. 2013. PMID: 24146095 Free PMC article. Review. - Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation.
Tsubaki M, Komai M, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S. Tsubaki M, et al. J Biomed Sci. 2014 Feb 3;21(1):10. doi: 10.1186/1423-0127-21-10. J Biomed Sci. 2014. PMID: 24490900 Free PMC article.
References
- Nature. 2003 Oct 23;425(6960):841-6 - PubMed
- Nature. 2006 Mar 30;440(7084):692-6 - PubMed
- Br J Plast Surg. 1989 Jan;42(1):46-9 - PubMed
- Am J Pathol. 2007 Jan;170(1):160-75 - PubMed
- Cancer Res. 2003 Aug 15;63(16):5028-33 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical