Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36 - PubMed (original) (raw)
. 2008 Jan 25;283(4):1857-61.
doi: 10.1074/jbc.M709384200. Epub 2007 Nov 19.
Affiliations
- PMID: 18025080
- DOI: 10.1074/jbc.M709384200
Free article
Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36
Yukiko Kamiya et al. J Biol Chem. 2008.
Free article
Abstract
ERGIC-53, VIPL, and VIP36 are related type 1 membrane proteins of the mammalian early secretory pathway. They are classified as L-type lectins because of their luminal carbohydrate recognition domain, which exhibits homology to leguminous lectins. These L-type lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a Ca(2+)-dependent manner, suggesting a role in glycoprotein sorting and trafficking. To understand the function of these lectins, knowledge of their carbohydrate specificity is crucial but only available for VIP36 (Kamiya, Y., Yamaguchi, Y., Takahashi, N., Arata, Y., Kasai, K. I., Ihara, Y., Matsuo, I., Ito, Y., Yamamoto, K., and Kato, K. (2005) J. Biol. Chem. 280, 37178-37182). Here we provide a comprehensive and quantitative analysis of sugar recognition of the carbohydrate recognition domains of ERGIC-53 and VIPL in comparison with VIP36 using a pyridylaminated sugar library in conjunction with frontal affinity chromatography. Frontal affinity chromatography revealed selective interaction of VIPL and VIP36 with the deglucosylated trimannose in the D1 branch of high-mannose-type oligosaccharides but with different pH dependence. ERGIC-53 bound high-mannose-type oligosaccharides with low affinity and broad specificity, not discriminating between monoglucosylated and deglucosylated high-mannosetype oligosaccharides. Based on the sugar-binding properties in conjunction with known features of these proteins, we propose a model for the action of the three lectins in glycoprotein guidance and trafficking. Moreover, structure-based mutagenesis revealed that the sugar-binding properties of these L-type lectins can be switched by single amino acid substitutions.
Similar articles
- Subcellular localization of ERGIC-53 under endoplasmic reticulum stress condition.
Qin SY, Kawasaki N, Hu D, Tozawa H, Matsumoto N, Yamamoto K. Qin SY, et al. Glycobiology. 2012 Dec;22(12):1709-20. doi: 10.1093/glycob/cws114. Epub 2012 Jul 20. Glycobiology. 2012. PMID: 22821029 - Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor.
Kamiya Y, Yamaguchi Y, Takahashi N, Arata Y, Kasai K, Ihara Y, Matsuo I, Ito Y, Yamamoto K, Kato K. Kamiya Y, et al. J Biol Chem. 2005 Nov 4;280(44):37178-82. doi: 10.1074/jbc.M505757200. Epub 2005 Aug 29. J Biol Chem. 2005. PMID: 16129679 - VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum.
Neve EP, Svensson K, Fuxe J, Pettersson RF. Neve EP, et al. Exp Cell Res. 2003 Aug 1;288(1):70-83. doi: 10.1016/s0014-4827(03)00161-7. Exp Cell Res. 2003. PMID: 12878160 - A review of ERGIC-53: its structure, functions, regulation and relations with diseases.
Zhang YC, Zhou Y, Yang CZ, Xiong DS. Zhang YC, et al. Histol Histopathol. 2009 Sep;24(9):1193-204. doi: 10.14670/HH-24.1193. Histol Histopathol. 2009. PMID: 19609866 Review. - Lectins and protein traffic early in the secretory pathway.
Hauri HP, Nufer O, Breuza L, Tekaya HB, Liang L. Hauri HP, et al. Biochem Soc Symp. 2002;(69):73-82. doi: 10.1042/bss0690073. Biochem Soc Symp. 2002. PMID: 12655775 Review.
Cited by
- Functional Roles of N-Linked Glycosylation of Human Matrix Metalloproteinase 9.
Duellman T, Burnett J, Yang J. Duellman T, et al. Traffic. 2015 Oct;16(10):1108-26. doi: 10.1111/tra.12312. Epub 2015 Sep 2. Traffic. 2015. PMID: 26207422 Free PMC article. - The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography.
Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. Hirabayashi J, et al. Molecules. 2015 Jan 8;20(1):951-73. doi: 10.3390/molecules20010951. Molecules. 2015. PMID: 25580689 Free PMC article. Review. - Protein folding and quality control in the ER.
Araki K, Nagata K. Araki K, et al. Cold Spring Harb Perspect Biol. 2011 Nov 1;3(11):a007526. doi: 10.1101/cshperspect.a007526. Cold Spring Harb Perspect Biol. 2011. PMID: 21875985 Free PMC article. Review. - Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans.
Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K. Hosokawa N, et al. J Biol Chem. 2009 Jun 19;284(25):17061-17068. doi: 10.1074/jbc.M809725200. Epub 2009 Apr 3. J Biol Chem. 2009. PMID: 19346256 Free PMC article. - Translational balancing questioned: Unaltered glycosylation during disulfiram treatment in mannosyl-oligosaccharide alpha-1,2-mannnosidase-congenital disorders of glycosylation (MAN1B1-CDG).
Kemme L, Grüneberg M, Reunert J, Rust S, Park J, Westermann C, Wada Y, Schwartz O, Marquardt T. Kemme L, et al. JIMD Rep. 2021 Mar 20;60(1):42-55. doi: 10.1002/jmd2.12213. eCollection 2021 Jul. JIMD Rep. 2021. PMID: 34258140 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous