Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences - PubMed (original) (raw)
Review
. 2008 Jan;115(1):97-114.
doi: 10.1007/s00401-007-0308-4. Epub 2007 Nov 17.
Affiliations
- PMID: 18026741
- DOI: 10.1007/s00401-007-0308-4
Review
Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences
Shinsuke Kato. Acta Neuropathol. 2008 Jan.
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. The author initially summarizes the principal features of human ALS neuropathology, and subsequently describes in detail ALS animal models mainly from the viewpoint of pathological similarities and differences. ALS animal models in this review include strains of rodents that are transgenic for superoxide dismutase 1 (SOD1), ALS2 knockout mice, and mice that are transgenic for cytoskeletal abnormalities. Although the neuropathological results obtained from human ALS autopsy cases are valuable and important, almost all of such cases represent only the terminal stage. This makes it difficult to clarify how and why ALS motor neurons are impaired at each clinical stage from disease onset to death, and as a consequence, human autopsy cases alone yield little insight into potential therapies for ALS. Although ALS animal models cannot replicate human ALS, in order to compensate for the shortcomings of studies using human ALS autopsy samples, researchers must inevitably rely on ALS animal models that can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy. Of course, human ALS and all ALS animal models share one most important similarity in that both exhibit motor neuron degeneration/death. This important point of similarity has shed much light on the pathomechanisms of the motor neuron degeneration/death at the cellular and molecular levels that would not have been appreciated if only human ALS autopsy samples had been available. On the basis of the aspects covered in this review, it can be concluded that ALS animal models can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy only in combination with detailed neuropathological data obtained from human ALS autopsy cases.
Similar articles
- Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Jaarsma D, et al. Neurobiol Dis. 2000 Dec;7(6 Pt B):623-43. doi: 10.1006/nbdi.2000.0299. Neurobiol Dis. 2000. PMID: 11114261 - Progranulin does not affect motor neuron degeneration in mutant SOD1 mice and rats.
Herdewyn S, De Muynck L, Van Den Bosch L, Robberecht W, Van Damme P. Herdewyn S, et al. Neurobiol Aging. 2013 Oct;34(10):2302-3. doi: 10.1016/j.neurobiolaging.2013.03.027. Epub 2013 Apr 19. Neurobiol Aging. 2013. PMID: 23608112 - Mitochondrial dysfunction and its role in motor neuron degeneration in ALS.
Manfredi G, Xu Z. Manfredi G, et al. Mitochondrion. 2005 Apr;5(2):77-87. doi: 10.1016/j.mito.2005.01.002. Mitochondrion. 2005. PMID: 16050975 Review. - Motor neuron dysfunction in a mouse model of ALS: gender-dependent effect of P2X7 antagonism.
Cervetto C, Frattaroli D, Maura G, Marcoli M. Cervetto C, et al. Toxicology. 2013 Sep 6;311(1-2):69-77. doi: 10.1016/j.tox.2013.04.004. Epub 2013 Apr 11. Toxicology. 2013. PMID: 23583883 - Amyotrophic lateral sclerosis: all roads lead to Rome.
Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, René F, Meininger V, Loeffler JP, Dupuis L. Gonzalez de Aguilar JL, et al. J Neurochem. 2007 Jun;101(5):1153-60. doi: 10.1111/j.1471-4159.2006.04408.x. Epub 2007 Jan 23. J Neurochem. 2007. PMID: 17250677 Review.
Cited by
- Bee venom effects on ubiquitin proteasome system in hSOD1(G85R)-expressing NSC34 motor neuron cells.
Kim SH, Jung SY, Lee KW, Lee SH, Cai M, Choi SM, Yang EJ. Kim SH, et al. BMC Complement Altern Med. 2013 Jul 18;13:179. doi: 10.1186/1472-6882-13-179. BMC Complement Altern Med. 2013. PMID: 23866691 Free PMC article. - Quantity and activation of myofiber-associated satellite cells in a mouse model of amyotrophic lateral sclerosis.
Manzano R, Toivonen JM, Calvo AC, Oliván S, Zaragoza P, Muñoz MJ, Montarras D, Osta R. Manzano R, et al. Stem Cell Rev Rep. 2012 Mar;8(1):279-87. doi: 10.1007/s12015-011-9268-0. Stem Cell Rev Rep. 2012. PMID: 21537993 No abstract available. - Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis.
Martin LJ, Chang Q. Martin LJ, et al. Mol Neurobiol. 2012 Feb;45(1):30-42. doi: 10.1007/s12035-011-8217-x. Epub 2011 Nov 10. Mol Neurobiol. 2012. PMID: 22072396 Free PMC article. Review. - Modeling neurological disorders by human induced pluripotent stem cells.
Kunkanjanawan T, Noisa P, Parnpai R. Kunkanjanawan T, et al. J Biomed Biotechnol. 2011;2011:350131. doi: 10.1155/2011/350131. Epub 2011 Nov 24. J Biomed Biotechnol. 2011. PMID: 22162635 Free PMC article. Review. - Nonamyloid aggregates arising from mature copper/zinc superoxide dismutases resemble those observed in amyotrophic lateral sclerosis.
Hwang YM, Stathopulos PB, Dimmick K, Yang H, Badiei HR, Tong MS, Rumfeldt JA, Chen P, Karanassios V, Meiering EM. Hwang YM, et al. J Biol Chem. 2010 Dec 31;285(53):41701-11. doi: 10.1074/jbc.M110.113696. Epub 2010 Oct 25. J Biol Chem. 2010. PMID: 20974846 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous