Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences - PubMed (original) (raw)
Review
. 2008 Jan;115(1):97-114.
doi: 10.1007/s00401-007-0308-4. Epub 2007 Nov 17.
Affiliations
- PMID: 18026741
- DOI: 10.1007/s00401-007-0308-4
Review
Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences
Shinsuke Kato. Acta Neuropathol. 2008 Jan.
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. The author initially summarizes the principal features of human ALS neuropathology, and subsequently describes in detail ALS animal models mainly from the viewpoint of pathological similarities and differences. ALS animal models in this review include strains of rodents that are transgenic for superoxide dismutase 1 (SOD1), ALS2 knockout mice, and mice that are transgenic for cytoskeletal abnormalities. Although the neuropathological results obtained from human ALS autopsy cases are valuable and important, almost all of such cases represent only the terminal stage. This makes it difficult to clarify how and why ALS motor neurons are impaired at each clinical stage from disease onset to death, and as a consequence, human autopsy cases alone yield little insight into potential therapies for ALS. Although ALS animal models cannot replicate human ALS, in order to compensate for the shortcomings of studies using human ALS autopsy samples, researchers must inevitably rely on ALS animal models that can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy. Of course, human ALS and all ALS animal models share one most important similarity in that both exhibit motor neuron degeneration/death. This important point of similarity has shed much light on the pathomechanisms of the motor neuron degeneration/death at the cellular and molecular levels that would not have been appreciated if only human ALS autopsy samples had been available. On the basis of the aspects covered in this review, it can be concluded that ALS animal models can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy only in combination with detailed neuropathological data obtained from human ALS autopsy cases.
Similar articles
- Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Jaarsma D, et al. Neurobiol Dis. 2000 Dec;7(6 Pt B):623-43. doi: 10.1006/nbdi.2000.0299. Neurobiol Dis. 2000. PMID: 11114261 - Progranulin does not affect motor neuron degeneration in mutant SOD1 mice and rats.
Herdewyn S, De Muynck L, Van Den Bosch L, Robberecht W, Van Damme P. Herdewyn S, et al. Neurobiol Aging. 2013 Oct;34(10):2302-3. doi: 10.1016/j.neurobiolaging.2013.03.027. Epub 2013 Apr 19. Neurobiol Aging. 2013. PMID: 23608112 - Mitochondrial dysfunction and its role in motor neuron degeneration in ALS.
Manfredi G, Xu Z. Manfredi G, et al. Mitochondrion. 2005 Apr;5(2):77-87. doi: 10.1016/j.mito.2005.01.002. Mitochondrion. 2005. PMID: 16050975 Review. - Motor neuron dysfunction in a mouse model of ALS: gender-dependent effect of P2X7 antagonism.
Cervetto C, Frattaroli D, Maura G, Marcoli M. Cervetto C, et al. Toxicology. 2013 Sep 6;311(1-2):69-77. doi: 10.1016/j.tox.2013.04.004. Epub 2013 Apr 11. Toxicology. 2013. PMID: 23583883 - Amyotrophic lateral sclerosis: all roads lead to Rome.
Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, René F, Meininger V, Loeffler JP, Dupuis L. Gonzalez de Aguilar JL, et al. J Neurochem. 2007 Jun;101(5):1153-60. doi: 10.1111/j.1471-4159.2006.04408.x. Epub 2007 Jan 23. J Neurochem. 2007. PMID: 17250677 Review.
Cited by
- A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration.
Nakamura M, Bieniek KF, Lin WL, Graff-Radford NR, Murray ME, Castanedes-Casey M, Desaro P, Baker MC, Rutherford NJ, Robertson J, Rademakers R, Dickson DW, Boylan KB. Nakamura M, et al. Acta Neuropathol. 2015 Jul;130(1):145-57. doi: 10.1007/s00401-015-1431-2. Epub 2015 Apr 28. Acta Neuropathol. 2015. PMID: 25917047 Free PMC article. - Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia.
Josephs KA, Whitwell JL, Murray ME, Parisi JE, Graff-Radford NR, Knopman DS, Boeve BF, Senjem ML, Rademakers R, Jack CR Jr, Petersen RC, Dickson DW. Josephs KA, et al. Brain. 2013 Feb;136(Pt 2):455-70. doi: 10.1093/brain/aws324. Epub 2013 Jan 28. Brain. 2013. PMID: 23358603 Free PMC article. - Mitochondria in neuroplasticity and neurological disorders.
Mattson MP, Gleichmann M, Cheng A. Mattson MP, et al. Neuron. 2008 Dec 10;60(5):748-66. doi: 10.1016/j.neuron.2008.10.010. Neuron. 2008. PMID: 19081372 Free PMC article. Review. - Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS.
Günther R, Pal A, Williams C, Zimyanin VL, Liehr M, von Neubeck C, Krause M, Parab MG, Petri S, Kalmbach N, Marklund SL, Sterneckert J, Munch Andersen P, Wegner F, Gilthorpe JD, Hermann A. Günther R, et al. Cells. 2022 Apr 6;11(7):1246. doi: 10.3390/cells11071246. Cells. 2022. PMID: 35406813 Free PMC article. - Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1H46R-expressing ALS mouse model.
Mitsui S, Otomo A, Nozaki M, Ono S, Sato K, Shirakawa R, Adachi H, Aoki M, Sobue G, Shang HF, Hadano S. Mitsui S, et al. Mol Brain. 2018 May 29;11(1):30. doi: 10.1186/s13041-018-0373-8. Mol Brain. 2018. PMID: 29843805 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous