Biochemical importance of glycosylation in thrombin activatable fibrinolysis inhibitor - PubMed (original) (raw)
. 2008 Feb 15;102(3):295-301.
doi: 10.1161/CIRCRESAHA.107.157099. Epub 2007 Dec 6.
Affiliations
- PMID: 18063813
- DOI: 10.1161/CIRCRESAHA.107.157099
Biochemical importance of glycosylation in thrombin activatable fibrinolysis inhibitor
Karlien Buelens et al. Circ Res. 2008.
Abstract
Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) exerts an antifibrinolytic effect by removing C-terminal lysines from partially degraded fibrin. These lysines are essential for a rapid conversion of plasminogen to plasmin by tissue type plasminogen activator. TAFI is heavily glycosylated at Asn22, Asn51, Asn63, and Asn86. Although the glycans occurring at the glycosylation sites have previously been identified, the biochemical role of these glycans is not known yet. Therefore, we have determined the biochemical importance of the glycosylation in TAFI. Four single, 6 double, 4 triple, and 1 quadruple mutant, in which asparagine was replaced by glutamine, were constructed and transfected into HEK293T cells. Based on the determination of antigen and activity levels on conditioned medium, 4 single and 1 triple mutant were purified and their biochemical properties were determined. The glycosylation knockout mutants did neither reveal an altered fragmentation pattern nor differences in TAFIa stability, but TAFI-N51Q, TAFI-N63Q, and TAFI-N22Q-N51Q-N63Q revealed a decreased TAFIa activity, an increased intrinsic catalytic activity of the zymogen, and a decreased antifibrinolytic potential compared with TAFI-wild-type, whereas TAFI-N22Q and TAFI-N86Q revealed an increased antifibrinolytic potential probably because of an increased catalytic efficiency toward the physiological substrate. From these data it can be concluded that mainly the glycosylation at Asn86 contributes to the biochemical characteristics of TAFI. Furthermore we provide evidence that the activation peptide stays in close proximity to the TAFIa moiety after activation.
Comment in
- Glycosylation of thrombin activatable fibrinolysis inhibitor: why is it so important?
Biscetti F. Biscetti F. Circ Res. 2008 Feb 15;102(3):278-9. doi: 10.1161/CIRCRESAHA.107.170498. Circ Res. 2008. PMID: 18276924 No abstract available.
Similar articles
- Glycosylation of thrombin activatable fibrinolysis inhibitor: why is it so important?
Biscetti F. Biscetti F. Circ Res. 2008 Feb 15;102(3):278-9. doi: 10.1161/CIRCRESAHA.107.170498. Circ Res. 2008. PMID: 18276924 No abstract available. - Post-translational modifications of human thrombin-activatable fibrinolysis inhibitor (TAFI): evidence for a large shift in the isoelectric point and reduced solubility upon activation.
Valnickova Z, Christensen T, Skottrup P, Thøgersen IB, Højrup P, Enghild JJ. Valnickova Z, et al. Biochemistry. 2006 Feb 7;45(5):1525-35. doi: 10.1021/bi051956v. Biochemistry. 2006. PMID: 16445295 - Thrombin activatable fibrinolysis inhibitor (TAFI) does not inhibit in vitro thrombolysis by pharmacological concentrations of t-PA.
Colucci M, D'Aprile AM, Italia A, Gresele P, Morser J, Semeraro N. Colucci M, et al. Thromb Haemost. 2001 Apr;85(4):661-6. Thromb Haemost. 2001. PMID: 11341502 - Thrombin activatable fibrinolysis inhibitor (TAFI): a role in pre-eclampsia?
Dusse LM, Cooper AJ, Lwaleed BA. Dusse LM, et al. Clin Chim Acta. 2007 Mar;378(1-2):1-6. doi: 10.1016/j.cca.2006.10.014. Epub 2006 Oct 26. Clin Chim Acta. 2007. PMID: 17184758 Review.
Cited by
- Thrombomodulin mutations in atypical hemolytic-uremic syndrome.
Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM. Delvaeye M, et al. N Engl J Med. 2009 Jul 23;361(4):345-57. doi: 10.1056/NEJMoa0810739. N Engl J Med. 2009. PMID: 19625716 Free PMC article. - Anaphylaxis syndromes related to a new mammalian cross-reactive carbohydrate determinant.
Commins SP, Platts-Mills TA. Commins SP, et al. J Allergy Clin Immunol. 2009 Oct;124(4):652-7. doi: 10.1016/j.jaci.2009.08.026. J Allergy Clin Immunol. 2009. PMID: 19815111 Free PMC article. Review. - Biochemical characterization of bovine plasma thrombin-activatable fibrinolysis inhibitor (TAFI).
Valnickova Z, Thaysen-Andersen M, Højrup P, Christensen T, Sanggaard KW, Kristensen T, Enghild JJ. Valnickova Z, et al. BMC Biochem. 2009 May 5;10:13. doi: 10.1186/1471-2091-10-13. BMC Biochem. 2009. PMID: 19416536 Free PMC article. - Visualization of Domain- and Concentration-Dependent Impact of Thrombomodulin on Differential Regulation of Coagulation and Fibrinolysis.
Mochizuki L, Sano H, Honkura N, Masumoto K, Urano T, Suzuki Y. Mochizuki L, et al. Thromb Haemost. 2023 Jan;123(1):16-26. doi: 10.1055/s-0042-1757407. Epub 2022 Oct 28. Thromb Haemost. 2023. PMID: 36307100 Free PMC article. - Flexibility of the thrombin-activatable fibrinolysis inhibitor pro-domain enables productive binding of protein substrates.
Valnickova Z, Sanglas L, Arolas JL, Petersen SV, Schar C, Otzen D, Aviles FX, Gomis-Rüth FX, Enghild JJ. Valnickova Z, et al. J Biol Chem. 2010 Dec 3;285(49):38243-50. doi: 10.1074/jbc.M110.150342. Epub 2010 Sep 29. J Biol Chem. 2010. PMID: 20880845 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources