Association of lipin 1 gene polymorphisms with measures of energy and glucose metabolism - PubMed (original) (raw)
. 2007 Nov;15(11):2723-32.
doi: 10.1038/oby.2007.324.
Affiliations
- PMID: 18070763
- DOI: 10.1038/oby.2007.324
Free article
Association of lipin 1 gene polymorphisms with measures of energy and glucose metabolism
Ruth J F Loos et al. Obesity (Silver Spring). 2007 Nov.
Free article
Abstract
Objective: To examine the importance of lipin 1 (LPIN1) gene variation in energy and glucose metabolism. Transgenic animal models have shown that lipin, a protein encoded by the LPIN1 gene, promotes fat synthesis and storage in adipose tissue while decreasing energy expenditure and lipid oxidation in skeletal muscle. Lpin1 was identified as the mutated gene in the fatty liver dystrophy mouse, which exhibits lipin deficiency and features of human lipodystrophy.
Research methods and procedures: We genotyped five LPIN1 polymorphisms and tested for association with resting metabolic rate (RMR), fat oxidation, fasting plasma insulin and glucose concentration, and obesity-related phenotypes, including BMI, body fat percentage, sum of six skinfolds, and waist circumference in 712 subjects of the Quebec Family Study.
Results: The strongest results were generation-specific. In parents, RMR of the G/G IVS13 + 3333A>G homozygotes was 107 kcal/d higher than in A/A homozygotes and 39 kcal/d higher than in A/G heterozygotes (p = 0.0003). In offspring, carriers of the C allele of the IVS18 + 181C>T variant had significantly higher (p < 0.0003) insulin levels than T/T homozygotes. These associations remained significant after adjusting for multiple testing. Several other associations between body composition measures and the IVS18 + 181C>T variant were significant (p = 0.05 to 0.003), suggesting a strong pattern of relationships.
Discussion: These findings support the hypothesis that sequence variation in the LPIN1 gene contributes to variation in RMR and obesity-related phenotypes potentially in an age-dependent manner.
Similar articles
- Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism.
Suviolahti E, Reue K, Cantor RM, Phan J, Gentile M, Naukkarinen J, Soro-Paavonen A, Oksanen L, Kaprio J, Rissanen A, Salomaa V, Kontula K, Taskinen MR, Pajukanta P, Peltonen L. Suviolahti E, et al. Hum Mol Genet. 2006 Feb 1;15(3):377-86. doi: 10.1093/hmg/ddi448. Epub 2005 Dec 15. Hum Mol Genet. 2006. PMID: 16357106 - The fat and thin of lipin.
Reitman ML. Reitman ML. Cell Metab. 2005 Jan;1(1):5-6. doi: 10.1016/j.cmet.2004.12.005. Cell Metab. 2005. PMID: 16054038 - Lipin, a lipodystrophy and obesity gene.
Phan J, Reue K. Phan J, et al. Cell Metab. 2005 Jan;1(1):73-83. doi: 10.1016/j.cmet.2004.12.002. Cell Metab. 2005. PMID: 16054046 - Energy balance and food intake: the role of PPARgamma gene polymorphisms.
Cecil JE, Watt P, Palmer CN, Hetherington M. Cecil JE, et al. Physiol Behav. 2006 Jun 30;88(3):227-33. doi: 10.1016/j.physbeh.2006.05.028. Epub 2006 Jun 13. Physiol Behav. 2006. PMID: 16777151 Review. - The lipin family: mutations and metabolism.
Reue K. Reue K. Curr Opin Lipidol. 2009 Jun;20(3):165-70. doi: 10.1097/MOL.0b013e32832adee5. Curr Opin Lipidol. 2009. PMID: 19369868 Free PMC article. Review.
Cited by
- Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs.
Mentzel CMJ, Cardoso TF, Pipper CB, Jacobsen MJ, Jørgensen CB, Cirera S, Fredholm M. Mentzel CMJ, et al. Mol Genet Genomics. 2018 Feb;293(1):129-136. doi: 10.1007/s00438-017-1369-2. Epub 2017 Sep 14. Mol Genet Genomics. 2018. PMID: 28913560 - Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling.
Coleman RA, Mashek DG. Coleman RA, et al. Chem Rev. 2011 Oct 12;111(10):6359-86. doi: 10.1021/cr100404w. Epub 2011 Jun 1. Chem Rev. 2011. PMID: 21627334 Free PMC article. Review. No abstract available. - Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia.
Michot C, Hubert L, Romero NB, Gouda A, Mamoune A, Mathew S, Kirk E, Viollet L, Rahman S, Bekri S, Peters H, McGill J, Glamuzina E, Farrar M, von der Hagen M, Alexander IE, Kirmse B, Barth M, Laforet P, Benlian P, Munnich A, JeanPierre M, Elpeleg O, Pines O, Delahodde A, de Keyzer Y, de Lonlay P. Michot C, et al. J Inherit Metab Dis. 2012 Nov;35(6):1119-28. doi: 10.1007/s10545-012-9461-6. Epub 2012 Apr 6. J Inherit Metab Dis. 2012. PMID: 22481384 - Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes.
Temprano A, Sembongi H, Han GS, Sebastián D, Capellades J, Moreno C, Guardiola J, Wabitsch M, Richart C, Yanes O, Zorzano A, Carman GM, Siniossoglou S, Miranda M. Temprano A, et al. Diabetologia. 2016 Sep;59(9):1985-94. doi: 10.1007/s00125-016-4018-0. Epub 2016 Jun 25. Diabetologia. 2016. PMID: 27344312 Free PMC article. - Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism.
Reue K, Brindley DN. Reue K, et al. J Lipid Res. 2008 Dec;49(12):2493-503. doi: 10.1194/jlr.R800019-JLR200. Epub 2008 Sep 12. J Lipid Res. 2008. PMID: 18791037 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources