Oxidative folding competes with mitochondrial import of the small Tim proteins - PubMed (original) (raw)
. 2008 Apr 1;411(1):115-22.
doi: 10.1042/BJ20071476.
Affiliations
- PMID: 18076384
- DOI: 10.1042/BJ20071476
Oxidative folding competes with mitochondrial import of the small Tim proteins
Bruce Morgan et al. Biochem J. 2008.
Abstract
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo.
Similar articles
- Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins.
Morgan B, Ang SK, Yan G, Lu H. Morgan B, et al. J Biol Chem. 2009 Mar 13;284(11):6818-25. doi: 10.1074/jbc.M808691200. Epub 2008 Dec 31. J Biol Chem. 2009. PMID: 19117943 Free PMC article. - Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1.
Spiller MP, Guo L, Wang Q, Tran P, Lu H. Spiller MP, et al. Biosci Rep. 2015 Mar 17;35(3):e00193. doi: 10.1042/BSR20150038. Biosci Rep. 2015. PMID: 26182355 Free PMC article. - Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates.
Ivanova E, Jowitt TA, Lu H. Ivanova E, et al. J Mol Biol. 2008 Jan 4;375(1):229-39. doi: 10.1016/j.jmb.2007.10.037. Epub 2007 Oct 22. J Mol Biol. 2008. PMID: 18022191 - Folding and biogenesis of mitochondrial small Tim proteins.
Ceh-Pavia E, Spiller MP, Lu H. Ceh-Pavia E, et al. Int J Mol Sci. 2013 Aug 13;14(8):16685-705. doi: 10.3390/ijms140816685. Int J Mol Sci. 2013. PMID: 23945562 Free PMC article. Review. - A disulfide relay system in mitochondria.
Tokatlidis K. Tokatlidis K. Cell. 2005 Jul 1;121(7):965-7. doi: 10.1016/j.cell.2005.06.019. Cell. 2005. PMID: 15989945 Review.
Cited by
- Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria.
Ceh-Pavia E, Tang X, Liu Y, Heyes DJ, Zhao B, Xiao P, Lu H. Ceh-Pavia E, et al. FEBS J. 2020 Jun;287(11):2281-2291. doi: 10.1111/febs.15136. Epub 2019 Nov 29. FEBS J. 2020. PMID: 31713999 Free PMC article. - The mitochondrial intermembrane space oxireductase Mia40 funnels the oxidative folding pathway of the cytochrome c oxidase assembly protein Cox19.
Fraga H, Bech-Serra JJ, Canals F, Ortega G, Millet O, Ventura S. Fraga H, et al. J Biol Chem. 2014 Apr 4;289(14):9852-64. doi: 10.1074/jbc.M114.553479. Epub 2014 Feb 25. J Biol Chem. 2014. PMID: 24569988 Free PMC article. - Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins.
Durigon R, Wang Q, Ceh Pavia E, Grant CM, Lu H. Durigon R, et al. EMBO Rep. 2012 Oct;13(10):916-22. doi: 10.1038/embor.2012.116. Epub 2012 Aug 10. EMBO Rep. 2012. PMID: 22878414 Free PMC article. - MIA40 circumvents the folding constraints imposed by TRIAP1 function.
Pujols J, Fornt-Suñé M, Gil-García M, Bartolomé-Nafría A, Canals F, Cerofolini L, Teilum K, Banci L, Esperante SA, Ventura S. Pujols J, et al. J Biol Chem. 2025 Mar;301(3):108268. doi: 10.1016/j.jbc.2025.108268. Epub 2025 Feb 3. J Biol Chem. 2025. PMID: 39909379 Free PMC article. - The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond.
Fischer M, Riemer J. Fischer M, et al. Int J Cell Biol. 2013;2013:742923. doi: 10.1155/2013/742923. Epub 2013 Nov 14. Int J Cell Biol. 2013. PMID: 24348563 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous