Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction - PubMed (original) (raw)
doi: 10.1634/stemcells.2007-0484. Epub 2007 Dec 13.
Ana Armiñan, Jose Manuel García-Verdugo, Elisa Lledó, Amparo Ruiz, M Dolores Miñana, Jorge Sanchez-Torrijos, Rafael Payá, Vicente Mirabet, Francisco Carbonell-Uberos, Mauro Llop, Jose Anastasio Montero, Pilar Sepúlveda
Affiliations
- PMID: 18079433
- DOI: 10.1634/stemcells.2007-0484
Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction
Carolina Gandia et al. Stem Cells. 2008 Mar.
Abstract
Human dental pulp contains precursor cells termed dental pulp stem cells (DPSC) that show self-renewal and multilineage differentiation and also secrete multiple proangiogenic and antiapoptotic factors. To examine whether these cells could have therapeutic potential in the repair of myocardial infarction (MI), DPSC were infected with a retrovirus encoding the green fluorescent protein (GFP) and expanded ex vivo. Seven days after induction of myocardial infarction by coronary artery ligation, 1.5 x 10(6) GFP-DPSC were injected intramyocardially in nude rats. At 4 weeks, cell-treated animals showed an improvement in cardiac function, observed by percentage changes in anterior wall thickening left ventricular fractional area change, in parallel with a reduction in infarct size. No histologic evidence was seen of GFP+ endothelial cells, smooth muscle cells, or cardiac muscle cells within the infarct. However, angiogenesis was increased relative to control-treated animals. Taken together, these data suggest that DPSC could provide a novel alternative cell population for cardiac repair, at least in the setting of acute MI.
Similar articles
- Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction.
Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I. Tokunaga M, et al. J Mol Cell Cardiol. 2010 Dec;49(6):972-83. doi: 10.1016/j.yjmcc.2010.09.015. Epub 2010 Sep 24. J Mol Cell Cardiol. 2010. PMID: 20869968 - Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction.
Iwasaki H, Kawamoto A, Ishikawa M, Oyamada A, Nakamori S, Nishimura H, Sadamoto K, Horii M, Matsumoto T, Murasawa S, Shibata T, Suehiro S, Asahara T. Iwasaki H, et al. Circulation. 2006 Mar 14;113(10):1311-25. doi: 10.1161/CIRCULATIONAHA.105.541268. Circulation. 2006. PMID: 16534028 - Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats.
Tang J, Wang J, Yang J, Kong X, Zheng F, Guo L, Zhang L, Huang Y. Tang J, et al. Eur J Cardiothorac Surg. 2009 Oct;36(4):644-50. doi: 10.1016/j.ejcts.2009.04.052. Epub 2009 Jun 12. Eur J Cardiothorac Surg. 2009. PMID: 19524448 - A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction.
Miao C, Lei M, Hu W, Han S, Wang Q. Miao C, et al. Stem Cell Res Ther. 2017 Nov 2;8(1):242. doi: 10.1186/s13287-017-0697-9. Stem Cell Res Ther. 2017. PMID: 29096705 Free PMC article. Review. - Cryopreservation and Banking of Dental Stem Cells.
Hilkens P, Driesen RB, Wolfs E, Gervois P, Vangansewinkel T, Ratajczak J, Dillen Y, Bronckaers A, Lambrichts I. Hilkens P, et al. Adv Exp Med Biol. 2016;951:199-235. doi: 10.1007/978-3-319-45457-3_17. Adv Exp Med Biol. 2016. PMID: 27837566 Review.
Cited by
- Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair.
Desai S, Jayasuriya CT. Desai S, et al. Bioengineering (Basel). 2020 Aug 4;7(3):86. doi: 10.3390/bioengineering7030086. Bioengineering (Basel). 2020. PMID: 32759659 Free PMC article. Review. - Effects of Perivitelline Fluid Obtained from Horseshoe Crab on The Proliferation and Genotoxicity of Dental Pulp Stem Cells.
Musa M, Mohd Ali K, Kannan TP, Azlina A, Omar NS, Chatterji A, Mokhtar KI. Musa M, et al. Cell J. 2015 Summer;17(2):253-63. doi: 10.22074/cellj.2016.3726. Epub 2015 Jul 11. Cell J. 2015. PMID: 26199904 Free PMC article. - Small molecules affect human dental pulp stem cell properties via multiple signaling pathways.
Al-Habib M, Yu Z, Huang GT. Al-Habib M, et al. Stem Cells Dev. 2013 Sep 1;22(17):2402-13. doi: 10.1089/scd.2012.0426. Epub 2013 May 24. Stem Cells Dev. 2013. PMID: 23573877 Free PMC article. - A transcriptomic analysis of dental pulp stem cell senescence in vitro.
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. Xu J, et al. Biomed Eng Online. 2024 Oct 18;23(1):102. doi: 10.1186/s12938-024-01298-w. Biomed Eng Online. 2024. PMID: 39425139 Free PMC article. - Neurogenic Differentiation of Human Dental Pulp Stem Cells on Graphene-Polycaprolactone Hybrid Nanofibers.
Seonwoo H, Jang KJ, Lee D, Park S, Lee M, Park S, Lim KT, Kim J, Chung JH. Seonwoo H, et al. Nanomaterials (Basel). 2018 Jul 21;8(7):554. doi: 10.3390/nano8070554. Nanomaterials (Basel). 2018. PMID: 30037100 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical