Developmental absence of the O2 sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs O2 constriction contributing to patent ductus arteriosus - PubMed (original) (raw)
Developmental absence of the O2 sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs O2 constriction contributing to patent ductus arteriosus
Bernard Thébaud et al. Pediatr Res. 2008 Feb.
Abstract
Patent ductus arteriosus (PDA) complicates the hospital course of premature infants. Impaired oxygen (O2)-induced vasoconstriction in preterm ductus arteriosus (DA) contributes to PDA and results, in part, from decreased function/expression of O2-sensitive, voltage-gated potassium channels (Kv) in DA smooth muscle cells (DASMCs). This paradigm suggests that activation of the voltage-sensitive L-type calcium channels (CaL), which increases cytosolic calcium ([Ca2+]i), is a passive consequence of membrane depolarization. However, effective Kv gene transfer only partially matures O2 responsiveness in preterm DA. Thus, we hypothesized that CaL are directly O2 sensitive and that immaturity of CaL function in preterm DA contributes to impaired O2 constriction. We show that preterm rabbit DA rings have reduced O2- and 4-aminopyridine (Kv blocker)-induced constriction. Preterm rabbit DASMCs have reduced O2-induced whole-cell calcium current (ICa) and [Ca2+]i. BAY K8644, a CaL activator, increased O2 constriction, ICa, and [Ca]i in preterm DASMCs to levels seen at term but had no effect on human and rabbit term DA. Preterm rabbit DAs have decreased gamma and increased alpha subunit protein expression. We conclude that the CaL in term rabbit and human DASMCs is directly O2 sensitive. Functional immaturity of CaL O2 sensitivity contributes to impaired O2 constriction in premature DA and can be reversed by BAY K8644.
Similar articles
- Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus.
Thébaud B, Michelakis ED, Wu XC, Moudgil R, Kuzyk M, Dyck JR, Harry G, Hashimoto K, Haromy A, Rebeyka I, Archer SL. Thébaud B, et al. Circulation. 2004 Sep 14;110(11):1372-9. doi: 10.1161/01.CIR.0000141292.28616.65. Epub 2004 Sep 7. Circulation. 2004. PMID: 15353504 - O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide.
Archer SL, Wu XC, Thébaud B, Moudgil R, Hashimoto K, Michelakis ED. Archer SL, et al. Biol Chem. 2004 Mar-Apr;385(3-4):205-16. doi: 10.1515/BC.2004.014. Biol Chem. 2004. PMID: 15134333 Review. - Effect of PGE2 on DA tone by EP4 modulating Kv channels with different oxygen tension between preterm and term.
Fan F, Ma A, Guan Y, Huo J, Hu Z, Tian H, Chen L, Zhu S, Fan L. Fan F, et al. Int J Cardiol. 2011 Feb 17;147(1):58-65. doi: 10.1016/j.ijcard.2009.07.045. Epub 2009 Sep 2. Int J Cardiol. 2011. PMID: 19729212 - The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria.
Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. Bentley RET, et al. Genomics. 2021 Sep;113(5):3128-3140. doi: 10.1016/j.ygeno.2021.07.006. Epub 2021 Jul 8. Genomics. 2021. PMID: 34245829 Free PMC article. - A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
Dunham-Snary KJ, Hong ZG, Xiong PY, Del Paggio JC, Herr JE, Johri AM, Archer SL. Dunham-Snary KJ, et al. Pflugers Arch. 2016 Jan;468(1):43-58. doi: 10.1007/s00424-015-1736-y. Epub 2015 Sep 23. Pflugers Arch. 2016. PMID: 26395471 Free PMC article. Review.
Cited by
- The role of redox changes in oxygen sensing.
Weir EK, Archer SL. Weir EK, et al. Respir Physiol Neurobiol. 2010 Dec 31;174(3):182-91. doi: 10.1016/j.resp.2010.08.015. Epub 2010 Aug 27. Respir Physiol Neurobiol. 2010. PMID: 20801237 Free PMC article. Review. - Pharmacological Closure of Patent Ductus Arteriosus: Selecting the Agent and Route of Administration.
Sivanandan S, Agarwal R. Sivanandan S, et al. Paediatr Drugs. 2016 Apr;18(2):123-38. doi: 10.1007/s40272-016-0165-5. Paediatr Drugs. 2016. PMID: 26951240 Review. - Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology.
Read AD, Bentley RE, Archer SL, Dunham-Snary KJ. Read AD, et al. Redox Biol. 2021 Nov;47:102164. doi: 10.1016/j.redox.2021.102164. Epub 2021 Oct 12. Redox Biol. 2021. PMID: 34656823 Free PMC article. Review. - Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Dunham-Snary KJ, et al. Chest. 2017 Jan;151(1):181-192. doi: 10.1016/j.chest.2016.09.001. Epub 2016 Sep 16. Chest. 2017. PMID: 27645688 Free PMC article. Review. - Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus.
Hong Z, Kutty S, Toth PT, Marsboom G, Hammel JM, Chamberlain C, Ryan JJ, Zhang HJ, Sharp WW, Morrow E, Trivedi K, Weir EK, Archer SL. Hong Z, et al. Circ Res. 2013 Mar 1;112(5):802-15. doi: 10.1161/CIRCRESAHA.111.300285. Epub 2013 Jan 18. Circ Res. 2013. PMID: 23334860 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous