Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis - PubMed (original) (raw)
. 2007 Dec 20;450(7173):1253-7.
doi: 10.1038/nature06421.
Affiliations
- PMID: 18097414
- DOI: 10.1038/nature06421
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
Miguel A Sanjuan et al. Nature. 2007.
Abstract
Phagocytosis and autophagy are two ancient, highly conserved processes involved, respectively, in the removal of extracellular organisms and the destruction of organisms in the cytosol. Autophagy, for either metabolic regulation or defence, involves the formation of a double membrane called the autophagosome, which then fuses with lysosomes to degrade the contents, a process that has similarities with phagosome maturation. Toll-like-receptor (TLR) engagement activates a variety of defence mechanisms within phagocytes, including facilitation of phagosome maturation, and also engages autophagy. Therefore we speculated that TLR signalling might link these processes to enhance the function of conventional phagosomes. Here we show that a particle that engages TLRs on a murine macrophage while it is phagocytosed triggers the autophagosome marker LC3 to be rapidly recruited to the phagosome in a manner that depends on the autophagy pathway proteins ATG5 and ATG7; this process is preceded by recruitment of beclin 1 and phosphoinositide-3-OH kinase activity. Translocation of beclin 1 and LC3 to the phagosome was not associated with observable double-membrane structures characteristic of conventional autophagosomes, but was associated with phagosome fusion with lysosomes, leading to rapid acidification and enhanced killing of the ingested organism.
Similar articles
- Autophagy proteins are not universally required for phagosome maturation.
Cemma M, Grinstein S, Brumell JH. Cemma M, et al. Autophagy. 2016 Sep;12(9):1440-6. doi: 10.1080/15548627.2016.1191724. Epub 2016 Jun 16. Autophagy. 2016. PMID: 27310610 Free PMC article. - Discovery of Atg5/Atg7-independent alternative macroautophagy.
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Nishida Y, et al. Nature. 2009 Oct 1;461(7264):654-8. doi: 10.1038/nature08455. Nature. 2009. PMID: 19794493 - The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis.
Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, Bicsak B, Divekar D, Powell PP, Naumann R, Beraza N, Carding SR, Florey O, Mayer U, Wileman T. Rai S, et al. Autophagy. 2019 Apr;15(4):599-612. doi: 10.1080/15548627.2018.1534507. Epub 2018 Nov 7. Autophagy. 2019. PMID: 30403914 Free PMC article. - Toll-like receptor signaling in the lysosomal pathways.
Sanjuan MA, Milasta S, Green DR. Sanjuan MA, et al. Immunol Rev. 2009 Jan;227(1):203-20. doi: 10.1111/j.1600-065X.2008.00732.x. Immunol Rev. 2009. PMID: 19120486 Review. - Noncanonical autophagy: one small step for LC3, one giant leap for immunity.
Mehta P, Henault J, Kolbeck R, Sanjuan MA. Mehta P, et al. Curr Opin Immunol. 2014 Feb;26:69-75. doi: 10.1016/j.coi.2013.10.012. Epub 2013 Nov 30. Curr Opin Immunol. 2014. PMID: 24556403 Review.
Cited by
- Autophagy Promotes Cigarette Smoke-Initiated and Elastin-Driven Bronchitis-Like Airway Inflammation in Mice.
Huang HQ, Li N, Li DY, Jing D, Liu ZY, Xu XC, Chen HP, Dong LL, Zhang M, Ying SM, Li W, Shen HH, Li ZY, Chen ZH. Huang HQ, et al. Front Immunol. 2021 Mar 22;12:594330. doi: 10.3389/fimmu.2021.594330. eCollection 2021. Front Immunol. 2021. PMID: 33828547 Free PMC article. - Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide.
Zhang L, Cardinal JS, Bahar R, Evankovich J, Huang H, Nace G, Billiar TR, Rosengart MR, Pan P, Tsung A. Zhang L, et al. Mol Med. 2012 Mar 27;18(1):201-8. doi: 10.2119/molmed.2011.00282. Mol Med. 2012. PMID: 22105605 Free PMC article. - Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease.
Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, Targan SR, Xavier RJ, Ernst PB, Green DR, McGovern DP, Virgin HW, Mazmanian SK. Chu H, et al. Science. 2016 May 27;352(6289):1116-20. doi: 10.1126/science.aad9948. Epub 2016 May 5. Science. 2016. PMID: 27230380 Free PMC article. - Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.
Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR, Ippolito G, Piacentini M. Falasca L, et al. Cell Death Differ. 2015 Aug;22(8):1250-9. doi: 10.1038/cdd.2015.67. Epub 2015 May 29. Cell Death Differ. 2015. PMID: 26024394 Free PMC article. Review. - MicroRNA regulation of macrophages in human pathologies.
Wei Y, Schober A. Wei Y, et al. Cell Mol Life Sci. 2016 Sep;73(18):3473-95. doi: 10.1007/s00018-016-2254-6. Epub 2016 May 2. Cell Mol Life Sci. 2016. PMID: 27137182 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases