Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease - PubMed (original) (raw)

Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease

Yueming Tang et al. Alcohol Clin Exp Res. 2008 Feb.

Abstract

Background and aims: Alcohol-induced gut leakiness is a key factor in alcoholic liver disease (ALD); it allows endotoxin to enter the circulation and initiate liver damage. Zonula occludens 1 (ZO-1) protein is a major component of tight junctions that regulates intestinal permeability. microRNAs (miRNAs) are recently discovered regulatory molecules that inhibit expression of their target genes.

The aims of our study were: (i) to investigate the effect of alcohol on miRNA-212 (miR-212) and on expression of its predicted target gene, ZO-1, (ii) to study the potential role of miR-212 in the pathophysiology of ALD in man.

Methods: Using a TaqMan miRNA assay system, we measured miR-212 expression levels in colon biopsy samples from patients with ALD and in Caco-2 cells (a human intestinal epithelial cell line) treated with or without EtOH. We measured ZO-1 protein levels using western blots. ZO-1 mRNA was assayed using real-time PCR. Intestinal barrier integrity was measured using fluorescein sulfonic acid clearance and immunofluorescent staining for ZO-1.

Results: Ethanol increased miR-212 expression, decreased ZO-1 protein levels, disrupted tight junctions, and increased the permeability of monolayers of Caco-2 cells. An miR-212 over-expression is correlated with hyperpermeability of the monolayer barrier. miR-212 levels were higher in colon biopsy samples in patients with ALD than in healthy controls; ZO-1 protein levels were lower.

Conclusion: These data suggest a novel mechanism for alcohol-induced gut leakiness, one in which EtOH induces miR-212 over-expression which causes gut leakiness by down-regulating ZO-1 translation. This mechanism is a potential therapeutic target for leaky gut in patients with or at risk for ALD.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources