The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors - PubMed (original) (raw)

Comparative Study

The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors

Karl J V Nordström et al. BMC Evol Biol. 2008.

Abstract

Background: G protein-coupled receptors (GPCRs) are one of the largest families of genes in mammals. Branchiostoma floridae (amphioxus) is one of the species most closely related species to vertebrates.

Results: Mining and phylogenetic analysis of the amphioxus genome showed the presence of at least 664 distinct GPCRs distributed among all the main families of GPCRs; Glutamate (18), Rhodopsin (570), Adhesion (37), Frizzled (6) and Secretin (16). Surprisingly, the Adhesion GPCR repertoire in amphioxus includes receptors with many new domains not previously observed in this family. We found many Rhodopsin GPCRs from all main groups including many amine and peptide binding receptors and several previously uncharacterized expansions were also identified. This genome has however no genes coding for bitter taste receptors (TAS2), the sweet and umami (TAS1), pheromone (VR1 or VR2) or mammalian olfactory receptors.

Conclusion: The amphioxus genome is remarkably rich in various GPCR subtypes while the main GPCR groups known to sense exogenous substances (such as Taste 2, mammalian olfactory, nematode chemosensory, gustatory, vomeronasal and odorant receptors) in other bilateral species are absent.

PubMed Disclaimer

Figures

Figure 1

Figure 1

The figure summarizes our findings in amphioxus in comparison with human GPCRs. The shape of the tree and the division are adopted from [4] and the black dots represent core nodes. The families are GLU, Glutamate; Rhod, Rhodopsin; ADH, Adhesion; FZD/TAS2, Frizzled/Taste2; SEC, Secretin; OA, Ocular albinism receptors; VR, Vomeronasal receptors. The Rhodopsin family is further split into α-, β- γ- and δ-groups. The subgroups in α are AMIN, serotonin/dopamine/adrenergic/trace amine receptors; MEC, melanocortin/Lysophospholipid (EDG)/adenosin/cannabinoid receptors; MTN, Melanotonin receptors; OPN, opsin-like receptors; PTG, prostaglandin receptors. In γ: CHEM, Chemokine-like receptors; MCH, Melanocyte concentrating hormone receptors; SOG, somatostatin/opioid/galanin receptors. In δ: LGR, glycoprotein binding receptors; MRG, MAS-related receptors; OLF, olfactory receptors; PUR, purine-like receptors. Orange leafs only hold amphioxus transcripts, purple only human and green leaves represent branches that hold genes from both species. The annotation at the end of each leaf is the number of GPCRs in each branch. The number without parenthesis is for amphioxus and that one within parenthesis is the number of human GPCRs according to [13].

Figure 2

Figure 2

Schematic picture of the phylogenetic relationship and the functional domains within the Adhesion GPCR family in amphioxus and human. The tree is based on a neighbor-joining tree bootstrapped 500 times. The colours of the leaves denote the species; orange for amphioxus and purple for human genes. The leaves also show the domains of the N-termini, except in two explicitly marked cases were it is C-termini that contain the domains. The domain search in amphioxus was made with the HMMER package, an e-value cut-off at 0.01 and the local PFAM models. Human domains were adopted, along with group annotations, from [13]. The symbols and abbreviations are shown in the lower left corner. The abbreviations stand for: GPS, GPCR proteolytic site; EGF, epidermal growth factor; HBD, hormone-binding domain; Ig, immunoglobulin; OLF, olfactomedin; GBL, galactose-binding lectin domain; CA, cadherin domains; LamG, laminin; LRR, leucine rich repeats; SEA, sperm protein, enterokinase, and agrin; TSP, thrombospondin; PTX, pentraxin domain. In the upper left corner are the domains unique for amphioxus. The abbreviations are: LDLa, Low-density lipoprotein receptor domain class A; SMB, Somatomedin B domain; DS, discoidin; I-set, Immunoglobulin I-set domain; CUB, CUB domain; LectinC, Lectin C-type domain; TNFR, TNFR/NGFR cysteine-rich region; Kringle, Kringle domain; SRCR, Scavenger receptor cysteine-rich domain.

Figure 3

Figure 3

Distribution of the number of different GPCR families in A) amphioxus, B) Humans and C) All animals, displayed on a logarithmic scale. The Animal diagram is based on an average for amphioxus, humans, Mus musculus, Gallus gallus, Danio rerio, Takifugu rubripes, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae and Caenorhabditis elegans. The numbers for humans and M. musculus are from [13], G. gallus from [8] and for the remaining species from [4].

Similar articles

Cited by

References

    1. Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. The EMBO journal. 1999;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. - DOI - PMC - PubMed
    1. Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 2002;3(10):928–944. doi: 10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5. - DOI - PubMed
    1. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular pharmacology. 2003;63(6):1256–1272. doi: 10.1124/mol.63.6.1256. - DOI - PubMed
    1. Fredriksson R, Schioth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Molecular pharmacology. 2005;67(5):1414–1425. doi: 10.1124/mol.104.009001. - DOI - PubMed
    1. Prabhu Y, Eichinger L. The Dictyostelium repertoire of seven transmembrane domain receptors. European journal of cell biology. 2006;85(9-10):937–946. doi: 10.1016/j.ejcb.2006.04.003. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources