Ion mobility-mass spectrometry - PubMed (original) (raw)
Review
Ion mobility-mass spectrometry
Abu B Kanu et al. J Mass Spectrom. 2008 Jan.
Abstract
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.
2008 John Wiley & Sons, Ltd
Similar articles
- Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
Levin DS, Miller RA, Nazarov EG, Vouros P. Levin DS, et al. Anal Chem. 2006 Aug 1;78(15):5443-52. doi: 10.1021/ac060003f. Anal Chem. 2006. PMID: 16878881 - Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS).
Kolakowski BM, Mester Z. Kolakowski BM, et al. Analyst. 2007 Sep;132(9):842-64. doi: 10.1039/b706039d. Epub 2007 Jun 26. Analyst. 2007. PMID: 17710259 - Ion mobility spectrometry detection for gas chromatography.
Kanu AB, Hill HH Jr. Kanu AB, et al. J Chromatogr A. 2008 Jan 4;1177(1):12-27. doi: 10.1016/j.chroma.2007.10.110. Epub 2007 Nov 12. J Chromatogr A. 2008. PMID: 18067900 Review. - Distortion of ion structures by field asymmetric waveform ion mobility spectrometry.
Shvartsburg AA, Li F, Tang K, Smith RD. Shvartsburg AA, et al. Anal Chem. 2007 Feb 15;79(4):1523-8. doi: 10.1021/ac061306c. Anal Chem. 2007. PMID: 17297950 - Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters.
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Cumeras R, et al. Analyst. 2015 Mar 7;140(5):1391-410. doi: 10.1039/c4an01101e. Analyst. 2015. PMID: 25465248 Free PMC article. Review.
Cited by
- Collision cross sections of large positive fullerene molecular ions and their use as ion mobility calibrants in trapped ion mobility mass spectrometry.
Oppenländer T, Gross JH. Oppenländer T, et al. Anal Bioanal Chem. 2024 Nov;416(28):6187-6197. doi: 10.1007/s00216-024-05579-0. Epub 2024 Oct 9. Anal Bioanal Chem. 2024. PMID: 39384572 Free PMC article. - Eliminating the Deadwood: A Machine Learning Model for CCS Knowledge-Based Conformational Focusing for Lipids.
Keng M, Merz KM Jr. Keng M, et al. J Chem Inf Model. 2024 Oct 28;64(20):7864-7872. doi: 10.1021/acs.jcim.4c01051. Epub 2024 Oct 8. J Chem Inf Model. 2024. PMID: 39378407 Free PMC article. - Integrated cellular 4D-TIMS lipidomics and transcriptomics for characterization of anti-inflammatory and anti-atherosclerotic phenotype of MyD88-KO macrophages.
Del Barrio Calvo C, Bindila L. Del Barrio Calvo C, et al. Front Cell Dev Biol. 2024 Aug 23;12:1450971. doi: 10.3389/fcell.2024.1450971. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 39247623 Free PMC article. - Evaluating the generalizability of graph neural networks for predicting collision cross section.
Engler Hart C, Preto AJ, Chanana S, Healey D, Kind T, Domingo-Fernández D. Engler Hart C, et al. J Cheminform. 2024 Aug 29;16(1):105. doi: 10.1186/s13321-024-00899-w. J Cheminform. 2024. PMID: 39210378 Free PMC article. - Challenges in Lipidomics Biomarker Identification: Avoiding the Pitfalls and Improving Reproducibility.
von Gerichten J, Saunders K, Bailey MJ, Gethings LA, Onoja A, Geifman N, Spick M. von Gerichten J, et al. Metabolites. 2024 Aug 19;14(8):461. doi: 10.3390/metabo14080461. Metabolites. 2024. PMID: 39195557 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources