Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability - PubMed (original) (raw)
. 2008 Mar 14;102(5):562-70.
doi: 10.1161/CIRCRESAHA.107.167908. Epub 2008 Jan 17.
Affiliations
- PMID: 18202311
- DOI: 10.1161/CIRCRESAHA.107.167908
Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability
Sabu Abraham et al. Circ Res. 2008.
Abstract
Growth, maturation, and integrity of the blood vessel network require extensive communication between the endothelial cells, which line the vascular lumen, and associated mural cells, namely vascular smooth muscle cells and pericytes. Pericytes extend long processes, make direct contact with the capillary endothelium, and promote vascular quiescence by suppressing angiogenic sprouting. Vascular smooth muscle cells are highly contractile, extracellular matrix-secreting cells that cover arteries and veins and provide them with mechanical stability and elasticity. In the damaged blood vessel wall, for example in atherosclerotic lesions, vascular smooth muscle cells lose their differentiated state and acquire a highly mitotic, so-called "synthetic" phenotype, which is thought to promote pathogenesis. Among other factors, extracellular matrix molecules and integrin family cell-matrix receptors may regulate this phenotypic transition. Here we show that the inactivation of the gene encoding the integrin beta1 subunit (Itgb1) with a Cre-loxP approach in mice leads to mural cell defects and postnatal lethality. Integrin beta1-deficient vascular smooth muscle cells display several hallmarks of the synthetic phenotype: Cell proliferation is enhanced, whereas differentiation and their ability to support blood vessels are compromised. Similarly, mutant pericytes are poorly spread but present in larger numbers. Our analysis of this mutant model shows that integrin beta1-mediated cell-matrix adhesion is a major determinant of the mural cell phenotype.
Similar articles
- Endothelial beta1 integrins regulate sprouting and network formation during vascular development.
Malan D, Wenzel D, Schmidt A, Geisen C, Raible A, Bölck B, Fleischmann BK, Bloch W. Malan D, et al. Development. 2010 Mar;137(6):993-1002. doi: 10.1242/dev.045377. Development. 2010. PMID: 20179098 - Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly.
Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH. Foo SS, et al. Cell. 2006 Jan 13;124(1):161-73. doi: 10.1016/j.cell.2005.10.034. Cell. 2006. PMID: 16413489 - Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of beta1-integrin and phosphatidylinositol 3-kinase/Akt.
Wang HQ, Bai L, Shen BR, Yan ZQ, Jiang ZL. Wang HQ, et al. Eur J Cell Biol. 2007 Jan;86(1):51-62. doi: 10.1016/j.ejcb.2006.09.001. Epub 2006 Dec 4. Eur J Cell Biol. 2007. PMID: 17141917 - Role of the extracellular matrix and its receptors in smooth muscle cell function: implications in vascular development and disease.
Hultgårdh-Nilsson A, Durbeej M. Hultgårdh-Nilsson A, et al. Curr Opin Lipidol. 2007 Oct;18(5):540-5. doi: 10.1097/MOL.0b013e3282ef77e9. Curr Opin Lipidol. 2007. PMID: 17885425 Review. - Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels.
Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GC, Greisler HP. Chan-Park MB, et al. J Biomed Mater Res A. 2009 Mar 15;88(4):1104-21. doi: 10.1002/jbm.a.32318. J Biomed Mater Res A. 2009. PMID: 19097157 Review.
Cited by
- RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted autoantibodies.
Martucciello S, Lavric M, Toth B, Korponay-Szabo I, Nadalutti C, Myrsky E, Rauhavirta T, Esposito C, Sulic AM, Sblattero D, Marzari R, Mäki M, Kaukinen K, Lindfors K, Caja S. Martucciello S, et al. J Mol Med (Berl). 2012 Jul;90(7):817-26. doi: 10.1007/s00109-011-0853-0. Epub 2012 Jan 6. J Mol Med (Berl). 2012. PMID: 22223195 - The vascular basement membrane as "soil" in brain metastasis.
Carbonell WS, Ansorge O, Sibson N, Muschel R. Carbonell WS, et al. PLoS One. 2009 Jun 10;4(6):e5857. doi: 10.1371/journal.pone.0005857. PLoS One. 2009. PMID: 19516901 Free PMC article. - Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries.
Cuttler AS, LeClair RJ, Stohn JP, Wang Q, Sorenson CM, Liaw L, Lindner V. Cuttler AS, et al. Genesis. 2011 Aug;49(8):673-80. doi: 10.1002/dvg.20769. Epub 2011 Jul 22. Genesis. 2011. PMID: 21557454 Free PMC article. - Employment of diverse in vitro systems for analyzing multiple aspects of disease, hereditary hemorrhagic telangiectasia (HHT).
Koh H, Kang W, Mao YY, Park J, Kim S, Hong SH, Lee JH. Koh H, et al. Cell Biosci. 2024 May 22;14(1):65. doi: 10.1186/s13578-024-01247-z. Cell Biosci. 2024. PMID: 38778363 Free PMC article. - Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy.
Humphreys BD. Humphreys BD. Semin Nephrol. 2012 Sep;32(5):463-70. doi: 10.1016/j.semnephrol.2012.07.009. Semin Nephrol. 2012. PMID: 23062987 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous