Risk perception in epidemic modeling - PubMed (original) (raw)
. 2007 Dec;76(6 Pt 1):061904.
doi: 10.1103/PhysRevE.76.061904. Epub 2007 Dec 5.
Affiliations
- PMID: 18233866
- DOI: 10.1103/PhysRevE.76.061904
Risk perception in epidemic modeling
Franco Bagnoli et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec.
Abstract
We investigate the effects of risk perception in a simple model of epidemic spreading. We assume that the perception of the risk of being infected depends on the fraction of neighbors that are ill. The effect of this factor is to decrease the infectivity, that therefore becomes a dynamical component of the model. We study the problem in the mean-field approximation and by numerical simulations for regular, random, and scale-free networks. We show that for homogeneous and random networks, there is always a value of perception that stops the epidemics. In the "worst-case" scenario of a scale-free network with diverging input connectivity, a linear perception cannot stop the epidemics; however, we show that a nonlinear increase of the perception risk may lead to the extinction of the disease. This transition is discontinuous, and is not predicted by the mean-field analysis.
Similar articles
- Stochastic analysis of epidemics on adaptive time varying networks.
Kotnis B, Kuri J. Kotnis B, et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062810. doi: 10.1103/PhysRevE.87.062810. Epub 2013 Jun 19. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. PMID: 23848732 - Epidemic size and probability in populations with heterogeneous infectivity and susceptibility.
Miller JC. Miller JC. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):010101. doi: 10.1103/PhysRevE.76.010101. Epub 2007 Jul 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17677396 - Epidemic threshold of the susceptible-infected-susceptible model on complex networks.
Lee HK, Shim PS, Noh JD. Lee HK, et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062812. doi: 10.1103/PhysRevE.87.062812. Epub 2013 Jun 19. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. PMID: 23848734 - Suppressing traffic-driven epidemic spreading by edge-removal strategies.
Yang HX, Wu ZX, Wang BH. Yang HX, et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):064801. doi: 10.1103/PhysRevE.87.064801. Epub 2013 Jun 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2013. PMID: 23848813 - Epidemionics: from the host-host interactions to the systematic analysis of the emergent macroscopic dynamics of epidemic networks.
Reppas AI, Spiliotis KG, Siettos CI. Reppas AI, et al. Virulence. 2010 Jul-Aug;1(4):338-49. doi: 10.4161/viru.1.4.12196. Virulence. 2010. PMID: 21178467 Review.
Cited by
- Local risk perception enhances epidemic control.
Herrera-Diestra JL, Meyers LA. Herrera-Diestra JL, et al. PLoS One. 2019 Dec 3;14(12):e0225576. doi: 10.1371/journal.pone.0225576. eCollection 2019. PLoS One. 2019. PMID: 31794551 Free PMC article. - Infection spreading in a population with evolving contacts.
Zanette DH, Risau-Gusmán S. Zanette DH, et al. J Biol Phys. 2008 Apr;34(1-2):135-48. doi: 10.1007/s10867-008-9060-9. Epub 2008 Mar 28. J Biol Phys. 2008. PMID: 19669498 Free PMC article. - The dynamics of the risk perception on a social network and its effect on disease dynamics.
Li M, Ling Y, Ma J. Li M, et al. Infect Dis Model. 2023 Jun 7;8(3):632-644. doi: 10.1016/j.idm.2023.05.006. eCollection 2023 Sep. Infect Dis Model. 2023. PMID: 37440762 Free PMC article. - The impact of vaccine success and awareness on epidemic dynamics.
Juang J, Liang YH. Juang J, et al. Chaos. 2016 Nov;26(11):113105. doi: 10.1063/1.4966945. Chaos. 2016. PMID: 27907992 Free PMC article. - Lattice model for influenza spreading with spontaneous behavioral changes.
Fierro A, Liccardo A. Fierro A, et al. PLoS One. 2013 Dec 23;8(12):e83641. doi: 10.1371/journal.pone.0083641. eCollection 2013. PLoS One. 2013. PMID: 24376727 Free PMC article.