Chromatin assembly using Drosophila systems - PubMed (original) (raw)
Chromatin assembly using Drosophila systems
Dmitry V Fyodorov et al. Curr Protoc Mol Biol. 2002 May.
Abstract
To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.
Similar articles
- Reconstitution of nucleosomal arrays using recombinant Drosophila ACF and NAP1.
Peterson CL. Peterson CL. Cold Spring Harb Protoc. 2009 Apr;2009(4):pdb.prot5114. doi: 10.1101/pdb.prot5114. Cold Spring Harb Protoc. 2009. PMID: 20147123 - Genetic and cytological analysis of Drosophila chromatin-remodeling factors.
Corona DF, Armstrong JA, Tamkun JW. Corona DF, et al. Methods Enzymol. 2004;377:70-85. doi: 10.1016/S0076-6879(03)77004-9. Methods Enzymol. 2004. PMID: 14979019 No abstract available. - Preparation of chromatin assembly extracts from preblastoderm Drosophila embryos.
Bonte E, Becker PB. Bonte E, et al. Methods Mol Biol. 2009;523:1-10. doi: 10.1007/978-1-59745-190-1_1. Methods Mol Biol. 2009. PMID: 19381942 - Chromatin assembly extracts from Drosophila embryos.
Becker PB, Tsukiyama T, Wu C. Becker PB, et al. Methods Cell Biol. 1994;44:207-23. doi: 10.1016/s0091-679x(08)60915-2. Methods Cell Biol. 1994. PMID: 7707953 Review. No abstract available. - 2. Chromatin assembly with H3 histones: full throttle down multiple pathways.
Schwartz BE, Ahmad K. Schwartz BE, et al. Curr Top Dev Biol. 2006;74:31-55. doi: 10.1016/S0070-2153(06)74002-9. Curr Top Dev Biol. 2006. PMID: 16860664 Review.
Cited by
- Reconstitution of Chromatin by Stepwise Salt Dialysis.
Cruz-Becerra G, Kadonaga JT. Cruz-Becerra G, et al. Bio Protoc. 2021 Apr 5;11(7):e3977. doi: 10.21769/BioProtoc.3977. eCollection 2021 Apr 5. Bio Protoc. 2021. PMID: 33889671 Free PMC article. - A simple and versatile system for the ATP-dependent assembly of chromatin.
Khuong MT, Fei J, Cruz-Becerra G, Kadonaga JT. Khuong MT, et al. J Biol Chem. 2017 Nov 24;292(47):19478-19490. doi: 10.1074/jbc.M117.815365. Epub 2017 Oct 5. J Biol Chem. 2017. PMID: 28982979 Free PMC article. - Mi2beta shows chromatin enzyme specificity by erasing a DNase I-hypersensitive site established by ACF.
Ishii H, Du H, Zhang Z, Henderson A, Sen R, Pazin MJ. Ishii H, et al. J Biol Chem. 2009 Mar 20;284(12):7533-41. doi: 10.1074/jbc.M807617200. Epub 2009 Jan 21. J Biol Chem. 2009. PMID: 19158090 Free PMC article. - The prenucleosome, a stable conformational isomer of the nucleosome.
Fei J, Torigoe SE, Brown CR, Khuong MT, Kassavetis GA, Boeger H, Kadonaga JT. Fei J, et al. Genes Dev. 2015 Dec 15;29(24):2563-75. doi: 10.1101/gad.272633.115. Genes Dev. 2015. PMID: 26680301 Free PMC article. - Reconstitution of Drosophila and human chromatins by wheat germ cell-free co-expression system.
Okimune KI, Nagy SK, Hataya S, Endo Y, Takasuka TE. Okimune KI, et al. BMC Biotechnol. 2020 Dec 1;20(1):62. doi: 10.1186/s12896-020-00655-6. BMC Biotechnol. 2020. PMID: 33261588 Free PMC article.