An improved theory for the prediction of microcavitation thresholds - PubMed (original) (raw)
An improved theory for the prediction of microcavitation thresholds
C K Holland et al. IEEE Trans Ultrason Ferroelectr Freq Control. 1989.
Abstract
An approximate analytical formulation is presented that allows for the calculation of acoustic pressure thresholds for transient cavitation over a variety of frequencies and host fluid parameters. Specifically, R.E. Apfel's (1986) theory is extended to include an estimate of the time delay associated with the Laplace pressure, 2sigma/R(0), where sigma is the surface tension and R(0) is the initial radius. Also presented is a correction factor for the time-averaged pressure difference, across the bubble wall during growth. An optimum size distribution of nuclei for the predisposition of a sample to microcavitation is exhibited. The role of transient cavitation in medical ultrasound is discussed.
Similar articles
- Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment.
Holland CK, Apfel RE. Holland CK, et al. J Acoust Soc Am. 1990 Nov;88(5):2059-69. doi: 10.1121/1.400102. J Acoust Soc Am. 1990. PMID: 2269722 - Dependence of optimal seed bubble size on pressure amplitude at therapeutic pressure levels.
Carvell KJ, Bigelow TA. Carvell KJ, et al. Ultrasonics. 2011 Feb;51(2):115-22. doi: 10.1016/j.ultras.2010.06.005. Epub 2010 Jul 15. Ultrasonics. 2011. PMID: 20656313 - Cavitation induced by asymmetric distorted pulses of ultrasound: theoretical predictions.
Ayme EJ, Carstensen EL. Ayme EJ, et al. IEEE Trans Ultrason Ferroelectr Freq Control. 1989;36(1):32-40. doi: 10.1109/58.16966. IEEE Trans Ultrason Ferroelectr Freq Control. 1989. PMID: 18284947 - The evolution of the cavitation bubble driven by different sound pressure.
Huang W, Chen W, Liu Y, Gao X. Huang W, et al. Ultrasonics. 2006 Dec 22;44 Suppl 1:e407-10. doi: 10.1016/j.ultras.2006.05.019. Epub 2006 Jun 2. Ultrasonics. 2006. PMID: 16782161 - The acoustic emissions of cavitation bubbles in stretched vortices.
Chang NA, Ceccio SL. Chang NA, et al. J Acoust Soc Am. 2011 Nov;130(5):3209-19. doi: 10.1121/1.3626121. J Acoust Soc Am. 2011. PMID: 22087993
Cited by
- Gold removal from e-waste using high-intensity focused ultrasound.
Holmström A, Pudas T, Hyvönen J, Weber M, Mizohata K, Sillanpää T, Mäkinen J, Kuronen A, Kotiaho T, Hæggström E, Salmi A. Holmström A, et al. Ultrason Sonochem. 2024 Oct 16;111:107109. doi: 10.1016/j.ultsonch.2024.107109. Online ahead of print. Ultrason Sonochem. 2024. PMID: 39437616 Free PMC article. - Deciphering the hydrodynamics of lipid-coated microbubble sonoluminescence for sonodynamic therapy.
Datta P, Moolayadukkam S, Prasad Sahu R, Ganguly R, Sen S, Puri IK. Datta P, et al. Ultrason Sonochem. 2024 Oct 1;111:107090. doi: 10.1016/j.ultsonch.2024.107090. Online ahead of print. Ultrason Sonochem. 2024. PMID: 39366089 Free PMC article. - Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system.
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Zhu P, et al. Adv Drug Deliv Rev. 2024 May;208:115275. doi: 10.1016/j.addr.2024.115275. Epub 2024 Mar 3. Adv Drug Deliv Rev. 2024. PMID: 38442747 Review. - Quantifying the Effect of Acoustic Parameters on Temporal and Spatial Cavitation Activity: Gauging Cavitation Dose.
Suarez Escudero D, Haworth KJ, Genstler C, Holland CK. Suarez Escudero D, et al. Ultrasound Med Biol. 2023 Nov;49(11):2388-2397. doi: 10.1016/j.ultrasmedbio.2023.08.002. Epub 2023 Aug 28. Ultrasound Med Biol. 2023. PMID: 37648590 Free PMC article. - In silico assessment of histotripsy-induced changes in catheter-directed thrombolytic delivery.
Bader KB, Flores Basterrechea K, Hendley SA. Bader KB, et al. Front Physiol. 2023 Jun 28;14:1225804. doi: 10.3389/fphys.2023.1225804. eCollection 2023. Front Physiol. 2023. PMID: 37449013 Free PMC article.
LinkOut - more resources
Other Literature Sources